1
iﬁﬁm

CST3240 Application Manual-1.0

++

h

8 1k Bl
NITRON

1. Overview

2. CST3240 Chip Introduction

2.1 Chip Hardware System Architecture

2.2 Main Features

3. Hardware Design Description

3.1 Channel Configuration Description

3.2 Application Circuit Reference

4 . Touch Point Protocol Parsing

4.1 Normal Coordinate Parsing

4.2 Physical Button Parsing

5. Driver Upgrade Process

6. Firmware Information Acquisition

Piutas

1.

Overview

This document primarily outlines the framework architecture for the application of Haiyuechuang Touch

CST3240 chip, facilitating FAE colleagues and solution companies in debugging and porting drivers. It

includes parsing of the chip’s touchpoint reporting protocol, firmware upgrade logic, and hardware

design descriptions.

2.

CST3240 Chip Introduction

2.1 Chip Hardware System Architecture

<>

SRR RS

32-bit CMO core, operating at 20MHz (with 3V power supply) or 32MHz (with 5V power supply)
16 RX detection channels

44 APIN pins, with TX and RX pins interchangeable

Configurable pump voltage ranging from 4V to 7.5V

8KB SRAM, 24KB Romcode (2KB BootlLoader), 16KB MTP (adjustable)

Configurable VDDIO: LDO18 or VDD3V

2.2 Main Features

R T R S S S

Self-Capacitance Waterproof/Non-Waterproof Scanning Function
Mutual Capacitance Single-TX, MTTX Scanning Function

Noise Listening Function

Frequency Hopping Function

Low Power Functions Including Deep Sleep, Light Sleep, etc.

12C In-Wakeup Function in Deep Sleep State

Communication Functions Including 12C, SPI, UART, etc.

GPIO Input/Output Function

Configurable 10 Communication Voltages: 1.8V, VDD3, etc.
Periodic Timer and Watchdog Function

DSP Computation Functions (Reading CSX DR, Filling CSX_BL, Solving MTTX, etc.

' E ik @
Sleep Timer
2KB BootLoader 16KB MTP WatchDog Timer
8KB -« »
DATA Memory ActiveTimer
’ INT CTRL A
CRC16 32Bu MCU
A
24/36Mhz 32Khz
SPM/SPS iy i
12CMS
DieepSleep Support
GPIO(7:0] € { o S < i Clack Resauives
UART
TIMER 16 > E
TSS DSP Noise Synchronizer
POR/PPOR \ RXCH[15:8] RXCH[7:0]
LVD r
A4)
Loy ‘ TX PUMP ‘
| |
<k
s -

APIN[43:0]

w + 3
,’ﬁ o
YNITRON
3 . Hardware Design Description
3.1 Channel Configuration Description
wmea S ELR2ELZT2UE
=il s i_-l i_-l i..l i_-l i_-l i_-l i_-l i_-l -\—'I
. Rt "'- W = = &= = -
32?5:5#&55??#:2
I R T T
@ HEFSFETSEFFTIIIFE
RX3_CHM | 1 39 | TX16_CHO
RX4_CHO | 2 38 | TXIS_CHIS
RXS_CH2 | 3 37 | TXM_CHM
RX6_CH®B | 4 36 | TX13_CHI3
yT32
RX7_CHM | 5 CST3240 35 | TXIZ_CHI2
RXS_CHOS | 6 3 | TXH_CHI
RX9_CHO6 | 7 QF N52-6x6 33 | TXW0_CHID
RX10_CHO7 | 8 40CH 32 | TX9 cnw
RX1I_CHIL | 9 31 | TXS_CHO8
RX12_CHI10 | 10 30 | TX7_CHOT
RX13_CH® | 11 29 | TX6_CHO6
VDDA | 12 28 | TX5_CHOS
VCCIS | 13 27 | TX4_CHM
= g = oo o o = o o= U WD
—————— L I o B o B . I o N o I
=<8 sasgdg8ceEssgeg
8Z2aaa"2348585887%
~ o ' =
= " ged — EREL

(1) Basic Principles of Channel Configuration

For RX channels: When scanning both mutual capacitance and self-capacitance signals, it must be ensured
that no duplicate internal RXCH channels are used when all RX sensors are scanned simultaneously.

For TX channels: When scanning the self-capacitance signals of TX sensors, if the number of TX sensors is less
than or equal to 16, ensure that the scan can be completed in a single pass. If the number of TX sensors
exceeds 16, they need to be divided into odd and even groups and scanned in two separate passes.

Piutas

(2) Reference Methods for Channel Configuration
For RX sensor channels:

If the number of RX sensors is < 14, you can directly use pins RX0 to RX13 for scanning. Alternatively, select N
consecutive pins from TXO0 to TX25 to scan the RX sensors.

If the number of RX sensors is between 15 and 16, you can use pins RX0 to RX13 and additionally select TX8
(CHO8) and TX14 (CH14) from the TX pins to scan the RX sensors. Alternatively, select N consecutive pins from
TX0 to TX25 to scan the RX sensors.

For TX sensor channels:

If the number of TX sensors is < 16, try to use 16 or fewer consecutive TX pins to scan the TX sensor's self-
capacitance data, ensuring completion in a single scan.

If the number of TX sensors is greater than 16, when selecting TX pins, ensure that the internal RXCHn
channels used for the odd-numbered TX sensor channels do not overlap, and similarly, the internal RXCHn
channels used for the even-numbered TX sensor channels do not overlap. This allows the TX self-capacitance
signal scan to be completed in two passes (odd and even groups).

Frauat

3.2 Application Circuit Reference

|
VDDIO
| r:i r:zL
Ve o i
=
l]
v(:(:wo—\ =
VDDA o——]

4 . Touch Point Protocol Parsing

YDDA

YCCI18

V5854

SCL

SDA

RSTn

VYDDHV

GP1O

VDDIO

41 Normal Coordinate Parsing

™>
X
X

RX
RX
RX

LAl

|_EX0

BXm

C1: 2.2pF / 10V
C2: 1uF / 10V
C3:100nF / 16V
C4: 1uF / 10V

R1/R2:
Alternatively, the chip's internal 5kQ

| 2. C bus pull-up resistors.
pull-up resistors can be configured for
this purpose.

VDDIO: Must be connected to either
VDDA or VCC18, depending on the
required 12C or SPI communication
voltage. If VDDIO is connected to
VCC18, the LDO18 must be enabled in
the firmware.,

The CST3240 chip has a default 7-bit communication address of 0x5A and supports both interrupt and polling

methods for reading touch points. It also supports key event reporting .

To read coordinate data, start from the register address 0xD000. Reading 7 bytes continuously will provide the

coordinate information for the first finger, including the number of fingers and the number of keys pressed .

After reading the coordinates, a synchronization command must be issued to complete the current coordinate

read operation. This is done by writing the value OxDOOOAB .

Important Note: Touch information must be acquired in Normal Mode; otherwise, the data will be abnormal. To

enter this mode, write the value 0xD109

Ox5A W 0xDO 0x00

Ox5A R 0x06 Ox33 0x56 Ox68 Ox8F O0x01 OxAB

Ox5A W 0xDO 0x00 OxAB

J § TR

&

The touch data registers are as follows:

Register High Nibble Low Nibble
Address
bit7 |oit6 bit5 bit4 bit3 |bitz |bit1 [bit0
0xD000 Ist Finger ID bit3-bit0: st Finger State Pressed (0x06) or Released (0x00)
0xD001 Upper 8 bits of 1st Finger's X Coordinate X_Position >> 4
0xD002 Upper 8 bits of 1st Finger's Y Coordinate Y_Position >> 4
0xD003 Lower 4 bits of 1st Finger's X Coordinate Lower 4 bits of the 1st finger's Y coordinate (Y_Position & 0xOF)

X_Position & OxOF

0xD004

Pressure value of the 1st finger

o 7
I Vatioh

0xD005 [Key Report Flag (0x80) Number of Fingers Reported

0xD006 |Fixed Value: OxAB

0xD007 |2nd Finger ID 2nd Finger State: Pressed (0x06) or Released (0x00)
0xD008 |Upper 8 bits of 2nd Finger's X Coordinate (X_Position >> 4)

0xD009 [Upper 8 bits of 2nd Finger's Y Coordinate (Y_Position >> 4)

0xDO0A [2nd Finger's X Coordinate (X_Position & 0xOF) 2nd Finger's Y Coordinate (Y_Position & 0xOF)
0xDOOB [Pressure Value of the 2nd Finger

0xDOOC [3rd Finger ID 3rd Finger State: Pressed (0x06) or Released (0x00)
0xDOOD [3rd Finger's X Coordinate (X_Position >> 4)

0xDOOE [3rd Finger's Y Coordinate (Y_Position >> 4)

OxDOOF [3rd Finger's X Coordinate (X_Position & 0xOF) 3rd Finger's Y Coordinate (Y_Position & 0xOF)
0xD010 [Pressure Value of the 3rd Finger

oxD011 4th Finger ID 4th Finger State: Pressed (0x06) or Released (0x00)
0xD012 4th Finger's X Coordinate (X_Position >> 4)

0xD013 J4th Finger's Y Coordinate (Y_Position >> 4)

0xD014 |th Finger's X Coordinate (X_Position & 0xOF) 4th Finger's Y Coordinate (Y_Position & OxOF)
0xD015 [Pressure Value of the 4th Finger

0xD016 |5th Finger ID 5th Finger State: Pressed (0x06) or Released (0x00)
0xD017 |5th Finger's X Coordinate (X_Position >> 4)

0xD018 [5th Finger's Y Coordinate (Y_Position >> 4)

0xD019 |5th Finger's X Coordinate (X_Position & 0xOF) 5th Finger's Y Coordinate (Y_Position & 0xOF)
0xDOTA [Pressure Value of the 5th Finger

Piutas

4.2 Physical Button Parsing

Button reporting is divided into two methods:reporting key values and reporting coordinates.The choice
between these two methods is implemented in the driver.The chip provides the assigned IDs for the
corresponding buttons(0x17,0x27,0x37),and the driver reports the corresponding key values or coordinates
based on these IDs

#if report_key value

#define key code {KEY BACK, KEY HOMEPAGE, KEY MENU}

#else

#define key x_coord {200, 600, 800}
#define key y coord {2000, 2000, 2000}
Ox5A W 0xDO 0x00
Ox5A R 0x83 0x17 0x00 0x00 0xO0 Ox80 OxAB
OX5A W 0xDO 0x00 OxAB

Register High Nibble Low Nibble
Address
bit7 bité bit5 bit4 bit3 bit2 bit bit0
0xD000 The state of the key: Pressed (0x83) or Released (0x80)
0xD001 Key ID(0x17,0x27,0x37)
0xD002 0x00
0xD003 0x00
0xD004 0x00
0xD005 Key Report Flag (0x80)
0xD006 Fixed value: OxAB

The driver reads 7 bytes of data from register 0xD00O (format as above), where buf[O]represents the key
press/release state, and buf[1]represents the different key IDs. Based on this ID, the corresponding key
value or the required coordinates can be reported.

Piutas

5. Driver Upgrade Process

Both external reset and power-on reset can cause the chip to restart and enter the BootlLoader.
During the initialization phase, the Bootloader verifies the main area. After completing the
necessary initialization and verification (approximately 10ms), the chip enters a timeout period
waiting for the host's firmware programming command. This timeout waiting period is about 15ms.
If the BootLoader program receives the host's firmware update command within this 15ms, the
program enters the firmware update process; otherwise, after the 15ms timeout, the program
jumps to the main program. Therefore, the host should wait about 10ms after performing an
external reset or power-on reset on the chip (waiting for the chip hardware and software
initialization to complete). Within the chip's 15ms waiting period for the firmware update
command, use the 12C bus to send the firmware update command to the chip.

The main upgrade process of the chip is divided into resetting the chip, entering BootLoader
mode, writing the firmware, verifying the firmware, and exiting BootLoader. Among these steps,
as described above, resetting the chip to enter BootLoader mode is the most important and the
most prone to issues. It is necessary to ensure that the reset operation is effective; otherwise, it
will be impossible to enter BootLoader mode for upgrading.

Specific Upgrade Process:
Upgrade Array File (Confirm the latest version with FAE): hynitron cst3240 update.h
Upgrade File Size: #define CST3240 BIN SIZE (31* 512 + 480)

StepT: Reset the Chip

After reset, the chip maintains a BootLoader mode window period between 5ms and 15ms. Sending the
command (within the cst3240 into_program_modefunction) during this period can make the chip enter
programming mode for firmware updates. The first priority in the upgrade process is to ensure that this reset
operation is effective; otherwise, upgrading is not possible. Note: Since the window period is not fixed, a

variable time retry timerneeds to be set for retry attempts.
hyn_reset_proc(5+retry_timer);

Step2: Enter Upgrade Mode
After sending the command 0xAO00TAAto enter upgrade mode, read the value of register 0xA002to determine
if entering upgrade mode was successful. If the return value is 0x55...

Step3: Update Firmware
The firmware must be sent with a total length of (31 * 512 + 480) bytes. Write 512 bytes at a time, for a
total of 31 writes. The final 480 bytes are written separately.

!
I' u 5 0
YNITRON
Step4: Verify Firmware Accuracy
After firmware transmission is complete, read the bin programming result from address 0xAQQO. If the

register content is 0x00, verification is not complete. If it is 0x01, verification passed. If it is 0x02, verification
failed.

If verification is determined to have passed, then read the firmware checksum from within the chip from
register OxAOO8 and compare it with the bin file checksum to see if the verification results are consistent.

// Firmware checksum within the chip

checksum = buf[@] + (buf[1]<<8) + (buf[2]<<16) + (buf[3]<<24);

// Bin file checksum

pData = hynitron_cst3240_update.h + 31 * 512 + 476; // 7 * 1024 + 512
bin_checksum = pData[@] + (pData[1]<<8) + (pData[2]<<16) + (pData[3]<<24);

If the checksums are inconsistent, it indicates a data transmission error. Return an error code.

Step5: Exit Upgrade Mode

Write OxEE to register 0xA006 to inform the chip that the upgrade has ended, exit upgrade mode, then
reset the chip. The upgrade is complete.

Note: If unable to enter bootloader mode during upgrade, please confirm the reset method:

1. Power-off reset

2. Reset pin reset

3. Watchdog reset

Window period for entering bootloader mode: Generally, commands sent within 5Sms~20ms after

resetting the chip are effective.

Piutas

6. Firmware Information Acquisition

(1) Firmware information must be read in debug info mode (write 0xD101). To ensure the mode switch
is successful, the mode command can be sent multiple times. If the command fails to send, incorrect
firmware information data will be read.

(2) Read the information from the corresponding register addresses (for specific addresses and data
storage format, refer to the table below).

(3) Return to normal mode (write 0xD109). After reading the firmware information, it is essential to
switch back to normal mode; otherwise, correct coordinate information cannot be read.

Register Address Register Description Register (4 bytes) Content

OxD1F4 Number of Keys, TX, RX Channels KEY NUM TP_NRX NC TP _NTX
OxD1F8 X/Y Resolution TP_RESY TP_RESX

OxD1FC Firmware Checksum, Bootloader Time OxCACA BOOT_TIMER

0xD204 Chip Type, Firmware Project ID IC_ TYPE PROJECT ID

0xD208 Chip Firmware Version Number FW_MAJOR FW_MINOR FW _BUILD

0xD20C Chip Firmware Checksum checksum H checksum H checksum L checksum L

