

High Performance TFT-LCD Graphics Controller

Data Sheet

V2.0

<u>www.levetop.tw</u> Levetop Semiconductor Co., Ltd.

Contents

0	Introduction	6									
0	Internal Block Diagram	6									
0	System Block Diagram	7									
0	Model Name7										
0	Features										
0	Pin Assignment	10									
0	Pin Description	11									
0	Absolute Maximum Ratings										
0	Electrical Characteristics										
O	Function Description										
1.	Clock and Reset										
	1.1 Clock										
	1.2 Reset										
	1.2.1 Power-on Reset	22									
	1.2.2 External Reset	22									
	1.2.3 Software Reset	22									
2.	Host Interface	23									
	2.1 Serial Host Interface	24									
	2.2 Display Input Data Format										
	2.2.1 Input Data without Opacity (RGB)										
	2.2.2 Input Data with Opacity (αRGB)	30									
3.	Display Memory	32									
	3.1 Display RAM Data Structure	33									
	3.1.1 8bpp Display Data (RGB 3:3:2)	33									
	3.1.2 16bpp Display Data (RGB 5:6:5)	33									
	3.1.3 Index Display with Opacity (αRGB 2:2:2:2)	33									
	3.1.4 12bpp Display with Opacity (αRGB 4:4:4:4)										
	3.2 Color Palette RAM	34									
4.	LCD Interface	35									
5.	Display Function	37									
	5.1 Color Bar	37									
	5.2 Main Window	37									

*T***LT7680**

		5.2.1 Configure Display Image Buffer	37
		5.2.2 Write Image Data to Display Image Buffer	38
		5.2.3 Display Main Window Image	39
	5.3	Picture-In-Picture (PIP)	40
		5.3.1 PIP Window Setting	40
		5.3.2 PIP Display Position and PIP Image Position	41
	5.4	Image Rotate and Mirror	42
6.	Geo	ometric Drawing Engine	45
	6.1	Drawing Circle and Ellipse	
	6.2	Drawing Curve	
	6.3	Drawing Rectangle	
	6.4	Draw Line	48
	6.5	Drawing Triangle	49
	6.6	Drawing Rounded-Rectangle	50
7.	Bloc	ck Transfer Engine (BTE)	51
	7.1	BTE Basic Settings	53
	7.2	Color Palette RAM	54
	7.3	BTE Operation Overview	55
		7.3.1 MCU Write with ROP	55
		7.3.2 Memory Copy with ROP	55
		7.3.3 Solid Fill	55
		7.3.4 Pattern Fill	55
		7.3.5 Pattern Fill with Chroma Key	55
		7.3.6 MCU Write with Chroma Key	55
		7.3.7 Memory Copy with Chroma Key	55
		7.3.8 MCU Write with Color Expansion	55
		7.3.9 Memory Copy with Color Expansion	56
		7.3.10 Memory Copy with Opacity	56
		7.3.11 MCU Write with Opacity	56
	7.4	BTE Memory Access Method	57
	7.5	BTE Chroma Key (Transparency Color) Function	57
	7.6	BTE Operation Detail	58
		7.6.1 MCU Write with ROP	58
		7.6.2 Memory Copy (move) with ROP	59
		7.6.3 MCU Write with Chroma Key (w/o ROP)	61
		7.6.4 Memory Copy with Chroma Key (w/o ROP)	62
		7.6.5 Pattern Fill with ROP	63

		7.6.6 Pattern Fill with Chroma Key	64
		7.6.7 MCU Write with Color Expansion	65
		7.6.8 MCU Write with Color Expansion and Chroma key	68
		7.6.9 Memory Copy with Opacity	69
		7.6.10 MCU Write with Opacity	73
		7.6.11 Memory Copy with Color Expansion	74
		7.6.12 Memory Copy with Color Expansion and Chroma Key	76
		7.6.13 Solid Fill	77
8.	Disp	olay Text	78
	8.1	Internal CGROM	
	8.2	User-defined Character Graphic (UCG)	
		8.2.1 8*16 UCG Data Format	
		8.2.2 16*16 UCG Data Format	82
		8.2.3 12*24 UCG Data Format	83
		8.2.4 24*24 UCG Data Format	84
		8.2.5 16*32 UCG Data Format	85
		8.2.6 32*32 UCG Data Format	
		8.2.7 Initialize CGRAM from MCU	
		8.2.8 Initialize CGRAM from Serial Flash	
	8.3	Character Rotation by 90 Degree	
	8.4	Size Enlargement	
	8.5	Background Transparency	90
	8.6	Character Full-Alignment	
	8.7	Automatic Line Feed	
	8.8		
		8.8.1 Text Cursor	
		8.8.2 Graphic Cursor	
9.	Puls	se Width Modulation (PWM)	95
	9.1	PWM Clock Source	95
	9.2	PWM Output	96
10	.Seri	al Bus Master	98
	10.1	Power-on Display	98
	10.2	SPI Master	102
	10.3	Serial Flash Controller	
		10.3.1 External Serial Flash	107
		10.3.2 DMA in Linear Mode for External Serial Flash	108
		10.3.3 DMA in Block Mode for External Serial Flash	108
		LT7680 DS ENG / V2.0	

11.0	GPIO Interface	111
12.	Power Management	112
	12.1 Normal Mode	
	12.2 Standby Mode	112
	12.3 Suspend Mode	
	12.4 Sleep Mode	113
13.F	Register Description	114
	13.1 Status Register	
	13.2 Configuration Registers	116
	13.3 PLL Setting Register	
	13.4 Interrupt Control Register	
	13.5 LCD Display Control Registers	
	13.6 Geometric Engine Control Registers	
	13.7 PWM Control Registers	148
	13.8 Bit Block Transfer Engine (BTE) Control Registers	151
	13.9 Serial Flash & SPI Master Control Registers	
	13.10 Text Engine Registers	
	13.11 Power Management Control Register	
	13.12 Display RAM Control Register	171
	13.13 I2C Master Register	175
	13.14 GPIO Register	177
Ð	Package Information	179
_	Revision	
	Copyright	

High Performance TFT-LCD Graphics Controller

Introduction

LT7680 series are high-performance TFT-LCD graphics accelerated display chip. Its main function is to assist MCU to display the contents of the TFT screen to the TFT Driver. It provides graphics acceleration, PIP (picture-in-picture), geometry graphics and other functions, in addition to enhance the display efficiency, also greatly reduces the MCU processing graphics display time spent. LT7680 also supports a very broad display resolution, can be from 320*240(QVGA) to 1280*1024(SXGA), the display is supported 16/18bits RGB interface.

LT7680 supports a variety of MCU interface, including 3-wires SPI, 4-wires SPI serial interface. In order to achieve multi-layers high-resolution display effect, LT7680 embedded a 128Mb Display RAM. This Displays

Memory can support 16M color display from 2 gray to 1bit per pixel to up to 18bits per pixel. At the same time to reduce the animation display MCU in the software operation burden. LT7680 built-in geometry drawing engine, supporting the painting point, drawing Line, drawing curve, ellipse, triangle, rectangle, rounded rectangle and other functions. The embedded hardware graphics Acceleration Engine (BTE) provides the command type of graphics operations, such as display rotation, mirror shot, the painting (PIP/Master-Sub Screen) and graphics mixed transparent display and other functions, enhance the display of the product performance, so can greatly reduce the MCU software operating burden. if use the high-speed SPI interface, then it can reduce the MCU I/O port needs, without to upgrade the MCU for TFT display. LT7680 powerful display function is very suitable for the electronic products with TFT-LCD screen, such as home appliances, multi-functional business machines, industrial equipment, industrial control, electronic equipment, medical equipment, human-computer interface, testing equipment and other products.

🔁 Internal Block Diagram

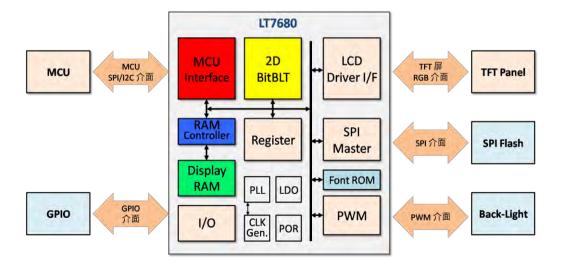


Figure A-1: Internal Block Diagram

System Block Diagram

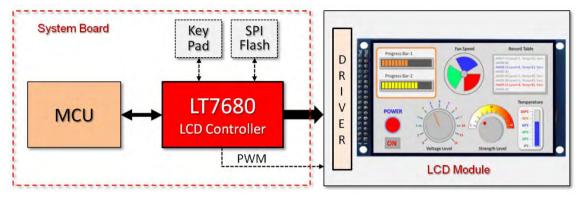


Figure A-2: LT7680 Designed on System Board

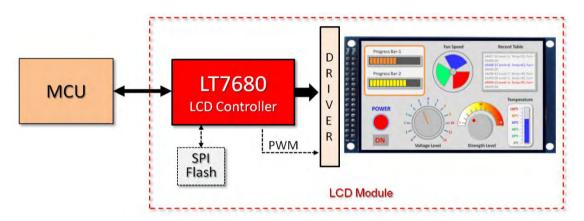


Figure A-3: LT7680 Designed on TFT-LCD Module

🔁 Model Name

Table A-1: Model Selection

Model Name	Package	Embedded Display RAM	Resolution	Colors
LT7680A-R	QFN-68 (8*8)	128Mb	1280*1024	65K/262K
LT7680B-R	QFN-68 (8*8)	128Mb	480*320	65K/262K

Features

Host Interface

■ Support 3-wires and 4-wires SPI Interface

Display Data Formats

- 1bpp: Monochrome Data (1-bit/Pixel)
- 8bpp: RGB 3:3:2 (1-byte/Pixel)
- 16bpp: RGB 5:6:5 (2-byte/Pixel)
- Index 2:6 (64 Index Colors/Pixel with Opacity Attribute)
- αRGB 4:4:4:4 (4096 Colors/Pixel with Opacity Attribute)

Support Panel and Resolution

- Support 16/18-bits RGB Interface Type Panel
- Supported Resolution:
 - > QVGA : 320*240, 16/18-bit LCD Panel
 - > WQVGA: 480*272, 16/18-bit LCD Panel
 - > VGA : 640*480, 16/18-bit LCD Panel
 - > WVGA : 800*480, 16/18-bit LCD Panel
 - > SVGA : 800*600, 16/18-bit LCD Panel
 - > QHD : 960*540, 16/18-bit LCD Panel
 - > WSVGA : 1024*600, 16/184-bit LCD Panel
 - > XGA : 1024*768, 16/18-bit LCD Panel
 - > SXGA : 1280*1024, 16/18-bit LCD Panel

Display Functions

- Multiple Display Buffer: Multi buffering allows the main display window to be switched among buffers. Multi buffering allows a simple animation display to be performed by switching the buffers
- Horizontal/Vertical Flip Display: Vertical Flip display functions are available for image data reads. PIP window will be disabled if flip display function enable
- Mirror and Rotation Functions are Available for Image Data Writes
- Provide four User-defined 32*32 Pixels Graphic Cursor
- Virtual Display: Virtual display is available to show an image which is larger than LCD panel size. The image may scroll easily in any direction

- Picture-in-Picture (PIP) Display: Supported two PIP windows area: Enabled PIP windows are always displayed on top of Main window. The PIP1 window is always on top of PIP2 window
- Wake-up Display: Wake-up Display is available to show the display data quickly which data is stored in Display RAM. This feature is used when returning from the Standby mode or Suspend mode
- Initial Display: Embedded a tiny processor with 12 instructions and use to show display data which stored in the serial flash and need not external MPU participate. It will auto execute after power-on, until program execute complete then handover control rights to external MCU
- Color Bar: It could display color bar on panel directly. Default resolution is 640 dots by 480 dots

Bit Block Transfer Engine (BTE)

- 2D BTE Engine
- Copy Image with Raster Operators
- Color Depth Conversion
- Solid Fill & Pattern Fill
- Provide User-defined Patterns with 8*8 Pixels or 16*16 Pixels
- Opacity (Alpha-Blend) Control: It blends two images and then generates a new image
 - Chroma-Keying Function: Mixes images with applying the specified RGB color according to transparency rate
 - Window Alpha-Blending Function: Mixes two images according to transparency rate in the specified region (fade-in and fade-out functions are available)
 - Dot Alpha-Blending Function: Mixes images according to transparency rate when the target is a graphics image in the RGB format

Display RAM (Frame Buffer)

LT7680A-R / LT7680B-R: Embedded 128Mb Display RAM

Shape Drawing Engine

Provide Smart Drawing Features: Line, Rectangle, Triangle, Polygon, Poly-Line, Circle, Ellipse, Arc, Rounded-Rectangle and Circle-Rectangle

Text Features

- Embedded 8*16, 12*24, 16*32 Character Sets of ISO/IEC 8859-1/2/4/5
- User-defined Characters Support Half Size & Full Size for 8*16, 12*24 and 16*32
- Programmable Text Cursor for Writing with Character
- Character Enlargement Function *1, *2, *3, *4 for Horizontal/Vertical Direction
- Support Character Rotates 90 Degree

SPI Master Interface

- Provide DMA Function: Support Direct Data Transfer from External Serial Flash to Frame Buffer
- Compatible with Standard SPI Specifications
- Provides 16bytes Read FIFO and 16bytes Write FIFO
- Provide Interrupt when Tx FIFO was Empty and SPI Tx/Rx Engine Idle

I2C Interface

 Support Standard Mode (100kbps) and Fast Mode (400kbps)

PWM Interface

- Embedded Two 16bits Timers
- One 8-bit Pre-Scalars & One 4bits Divider
- Programmable Duty Control of Output Waveform (PWM)
- Auto Reload Mode or One-Shot Pulse Mode
- Dead-Zone Generator

Power Saving

- Support Three Kind of Power Saving Mode: Standby, Suspend and Sleep Mode
- Support Wakeup Function by Host and External Event

Clock Source

Embedded Programmable PLL for Core Clock, LCD Panel's Pixel Clock and Frame Buffer Clock

Reset

- Provide Power On Reset Automatically
- Accept External Hardware Reset to Synchronize with System
- Software Command Reset

Power Supply

- VDD: 3.3V +/- 0.3V
- Embedded 1.8V LDO

Package

LQFP 100/128-Pins, QFN 68-Pins

Temperature

■ -40°C~80°C

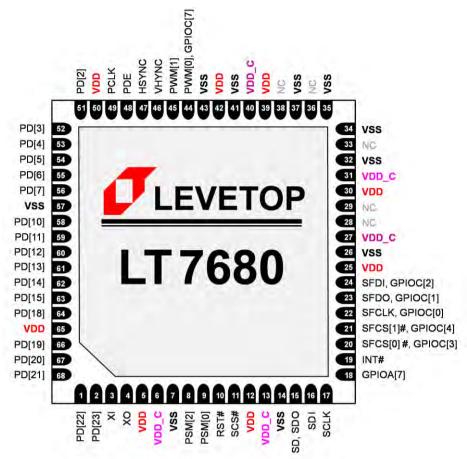


Figure A-4: LT7680A-R / LT7680B-R Pin Assignment (QFN-68Pin)

Host Interface Select Signals (2 Pins)

Table A-2: Host I/F Select Signals

Pin #	Pin Name	I/O	Pin Description											
		I	Host Ir	nterface Se	election									
			I	I	I	I						PSM[2]	PSM[0]	Host I/F Mode
8~9	PSM[2] PSM[0]							1	0	3-Wire SPI Mode				
													1	1
			The PS	SM[2] pin m	iust conne	xt to Hi.								

MCU Serial I/F Signals (5 Pins)

Table A-3: Host Serial I/F Signals

Pin #	Pin Name	I/O	Pin Description
17	SCLK	I	SPI Clock SCLK: Clock of 3-wire, 4-wire Serial Interface.
16	SDI	I	4-wire SPI Data Input Data output pin of 4-wire SPI I/F. Normally it's connect to MCU's MOSI. This pin is not used In 3-Wire serial I/F. Please connect it to GND.
15	SD SDO	Ю	 3-wire SPI Data SD: Bi-direction data pin of 3-wire SPI I/F. 4-wire SPI Data Output SDO: Data output pin of 4-wire SPI I/F. Normally it's connect to MCU's MISO.
11	SCS#	I	SPI Chip Select SCS#: Chip select pin for 3-wire or 4-wire serial I/F.
19	INT#	0	Interrupt Output Signal The interrupt output for host to indicate the status.

External Serial Flash / SPI Master Signals (5 Pins)

Table A-4: External Serial Flash Signals

Pin #	Pin Name	I/O	Pin Description
20	SFCS[0]# GPIOC[3]	Ю	Chip Select 0 for External Serial Flash or SPI device SPI Chip select pin #0 for serial Flash or SPI device. If SPI master I/F is disabled then it can be programmed as GPIOC[3], and default is input function.
21	SFCS[1]# GPIOC[4]	Ю	Chip Select 1 for External Serial Flash or SPI device SPI Chip select pin #1 for serial Flash or SPI device. If SPI master I/F is disabled then it can be programmed as GPIOC[4], and default is input function.
22	SFCLK GPIOC[0]	Ю	SPI Serial Clock Serial clock output for serial Flash/ROM or SPI device. If SPI master I/F is disabled then it can be programmed as GPIO C[0], and default is input function.
23	SFDO GPIOC[1]	Ю	 Master Output Slave Input Single Mode: Data input of serial Flash or SPI device. For LT7680, it is output. Dual Mode: The signal is used as bi-direction data #0(SIO0). Only valid in serial flash DMA mode. If SPI master I/F is disabled then it can be programmed as GPIO C[1], and default is input function.
24	SFDI GPIOC[2]	Ю	 Master Input Slave Output Single Mode: Data output of serial Flash or SPI device. For LT7680, it is input. Dual Mode: The signal is used as bi-direction data #1(SIO1). Only valid in serial flash DMA mode. If SPI master I/F is disabled then it can be programmed as GPIOC[2], and default is input function.

LCD Driver Signals (22 Pins)

Table A-5: LCD Driver Signals

Pin #	Pin Name	I/O			Pin Descript	ion						
64K/256K/16					output for sour	ce driver. LT76× egister setting; different setting.	supports user can					
				Pin	TFT-LCD	Interface						
				Name	16bits	18bits						
				PD[2]	GPIOD[6]	B0						
				PD[3]	B0	B1						
				PD[4]	B1	B2						
				PD[5]	B2	B3						
				PD[6]	B3	B4						
				PD[7]	B4	B5						
				PD[10]	G0	G0						
	PD[23:18], PD[15:10], PD[7:2],	Ю		PD[11]	G1	G1						
2~1,				PD[12]	G2	G2						
2~1, 68~66,				PD[13]	G3	G3						
64,				PD[14]	G4	G4						
63~58,						l			PD[15]	G5	G5	
56~51				PD[18]	GPIOD[7]	R0						
							PD[19]	R0	R1			
				PD[20]	R1	R2						
				PD[21]	R2	R3						
				PD[22]	R3	R4						
				PD[23]	R4	R5						
					oins that share w 8bpp function m	vith GPIO pins. T node.	he Default					

Pin #	Pin Name	I/O	Pin Description
49	PCLK	Ο	Panel Scan Clock Generic TFT interface signal for panel scan clock. It derives from internal PLL.
46	VSYNC	0	VSYNC Pulse Generic TFT interface signal for vertical synchronous pulse.
47	HSYNC	0	HSYNC Pulse Generic TFT interface signal for horizontal synchronous pulse.
48	PDE	0	Data Enable Generic TFT interface signal for data valid or data enable.

Table A-6: LCD Driver Signals (Continued)

PWM Output Signals (2 Pins)

Table A-7: PWM Output Signals

Pin #	Pin Name	I/O	Pin Description
44	PWM[0] INITDIS GPIOC[7] CCLK	Ю	 PWM Output 0 / Initial Display Enable PWM[0]: PWM"s output signal. The output mode is decided by configuration register. This pin can be used as the control signal of TFT panel"s back light. INITDIS: Pull-high this pin will enable Initial Display function. This pin has internal pull-down in reset period to disable Initial Display function by default. i.e. after reset complete, internal pull-down resistor will be disabled. If PWM function disabled then it can be programmed as GPIO C[7], and default is GPIOC[7] input function, or output Core Clock - CCLK.
45	PWM[1]	Ю	PWM Output 1 PWM"s output signal. The output mode and output function is decided by configuration register. This pin also can be used as the control signal of TFT panel"s back light. When TEST[0] set high, then PWM[1] pin is external panel scan clock input

GPIO Signals (9 Pins)

Table A-8: General Purpose I/O Signals

Pin #	Pin Name	I/O	Pin Description
18	GPIOA[7]	Ю	GPIO A Group GPIOA[7] is a general purpose I/O.
44, 21, 20, 24, 23, 22	GPIOC[7] GPIOC[4:0]	10	GPIO C Group These are general purpose I/O. GPIOC are available when PWM and SPI Master functions disabled. GPIOC[7] is same pin with PWM[0]. GPIOC[4:0] are multiplex pins that share with {SFCS1#, SFCS0#, SFDI, SFDO, SFCLK}
64, 51	GPIOD[7:6]	10	GPIO D Group These are general purpose I/O. GPIOD[7] are multiplex pins that share with PD[18], and GPIOD[6] are multiplex pins that share with PD[2]. GPIOD[7,6] are available when LCD Panel interface is set 16bits.

Power and Clock Signals (25 Pins)

Table A-9: Power and Clock Signals

Pin #	Pin Name	I/O	Pin Description
3	XI	I	Crystal / External Clock Input This input pin is used for internal crystal circuit or external clock that generate clock source for PLL. It should be connected to external crystal or clock, and suggested frequency is 8 ~ 12 MHz.
4	хо	0	Crystal Output This is an output pin for internal crystal circuit. It should be connected to external crystal circuit.
6, 13, 27, 31, 40	VDD_C	PWR	Internal LDO Output These pins must connect 1uF and 0.1uF capacitor to ground.
5, 12, 25, 30, 39, 42, 50, 65	VDD	PWR	3.3V Power Pins
7, 14, 26, 32, 34, 35, 37, 41, 43, 57,	VSS	PWR	Ground(GND) Pins
	Thermal Pad	-	The back of LT7680 Heat sink pad must tied to ground.

Reset Signal (1 Pins)

Pin #	Pin Name	I/O	Pin Description
10	RST#	I/O	Reset Signal Input This is a active low Reset pin for LT7680. To avoid noise interfere and cause fake reset behavior, this pin is active at least 256 OSC clocks.

Table A-10: Reset and Test Signals

🔁 Absolute Maximum Ratings

Table A-11: Absolute Maximum Ratings

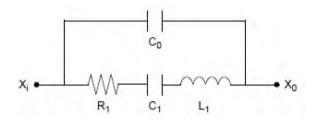
Symbol	Parameter	Value	Unit
V _{DD}	Supply Voltage Range	-0.3 ~ 4.0	V
V _{IN}	V _{IN} Input Voltage Range -0.3 ~ VDD+0.3		V
V _{OUT}	Output Voltage Range	-0.3 ~ VDD+0.3	V
P _D	Power Dissipation	≦300	mW
T _{OPR}	T _{OPR} Operation Temperature Range		°C
T _{ST}	T _{ST} Storage Temperature		°C
T _{SOL}	Soldering Temperature	260	°C

Note:

If used beyond the absolute maximum ratings, LT7680 may be permanently damaged. It is strongly recommended that the device be used within the electrical characteristics in normal operations. If exposed to the condition not within the electrical characteristics, it may affect the reliability of the device. This specification does not guarantee the accuracy of the parameters without a given upper and lower limit value, but it's typical value reasonably reflects the device performance.

Electrical Characteristics (Condition: V_{DD} = 3.3V, T_A = 25 °C)

Table A-12: Electrical Characteristics


Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{DD}	System Voltage		3.0	3.3	3.6	V
C _{VDD}	Loading Capacitor		1	I	10	uF
I _{OPR}	Operation Current	Note 1		60		mA
I _{STB}	Standby Mode	Note 1		30		mA
I _{SUSP}	Suspend Mode	Note 1		10		mA
I _{SLP}	Sleep Mode	Note 1		7		mA
T _{RMP}	Power Ramp Up Time	VDD Ramp Up to 3.3 V	3.5		35	ms
OSC / PLL						
F _{osc}	Oscillator Clock	V _{DD} = 3.3 V, Note 2		10		MHz
F _{VCO}	VCO Output Clock Frequency		100		500	MHz
T _{LOCK}	Lock Time	Note 3			500	us
CLK _{MPLL}	MPLL Output Clock (MCLK)	VDD = 3.3 V			133	MHz
CLK _{CPLL}	CPLL Output Clock (CCLK)	VDD = 3.3 V			100	MHz
CLK _{PPLL}	PPLL Output Clock (PCLK)	VDD = 3.3 V			80	MHz

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Serial Host Interfa	Serial Host Interface					
CLK _{SPI}	SPI Input Clock				50	MHz
Input/Output (CMC	DS 3-state Output pad with Schn	nitt Trigger Inpu	it, Pull-U	Jp/Dowr)	
V _{IH}	Input High Voltage		2		3.6	V
V _{IL}	Input Low Voltage		-0.3		0.8	V
V _{OH}	Output High Voltage		2.4			V
V _{OL}	Output Low Voltage				0.4	V
R _{PU}	Pull up Resistance		34	41	64	KΩ
R _{PD}	Pull down Resistance		33	44	79	KΩ
V _{TP}	Schmitt Trigger Low to High Threshold		1.5		2.1	V
V _{TN}	Schmitt Trigger High to Low Threshold		0.8		1.3	V
V _{HVS}	Hysteresis Voltage		200			mV
I _{LEAK}	Input Leakage Current		-10		+10	μA
V _{SLEW}	Rise/Fall Slew Rate			1.5		V/ns

Table A-13: Electrical Characteristics	(Continued)
	(0011111000)

Note 1: Measured on tester with 8 bit MPU interface and without extra load.

Note 2: Parasitic effect used in the Crystal Oscillator.

Typical: R1 = 50Ω (25-100Ω), L1 = 3.4mH, C1 = 13fF, C0 = 2.8pF

Figure A-5: Equivalent Circuit

Note 3: Time from power-up or change PLLs" parameters until to PLL have stable clock output.

Function Description

1. Clock and Reset

1.1 Clock

LT7680 embedded three PLL circuit to generate three clock source for internal circuit operation:

- CPLL : Provide **CCLK** for Host interface, BTE Engine, Graphics Engine, and Text DMA data transfer etc...
- MPLL : Provide **MCLK** for internal Display RAM
- PPLL : Provide **PCLK** for TFT-LCD"s Scan Clock.

The three PLL are operation independent. The PLL output frequency is calculated from the following formula:

 $F_{OUT} = XI * (N / R) \div OD$

In above formula, XI is the external Oscillator / Clock input. The input frequency "XIN/R" is no less than 1MHz, and the default value is 1MHz. "R" is Input Divider Ratio, it between $2 \sim 31$. "OD" is Output Divider Ratio that must be 1, 2 or 4. "N" is the Feedback Divider Ratio of Loop that indicated by 9bits which between $2 \sim 511$.

R[4:0]	Input Divider Ratio (R)	N[8:0]	Feedback Divider Ratio (N)
00010	2	00000010	2
00011	3	00000011	3
00101	4	000000101	4
:	:	:	:
:			
11101	29	111111101	509
11110	30	111111110	510
11111	31	111111111	511

Table 1-1: PLL Register Setting (1)

Table 1-2: PLL Register Setting (2)

OD[1:0]	Input Divider Ratio (OD)
00	1
01	2
10	3
11	4

For example, XI is 10MHz, R[4:0] is 01010 (i.e. 10), N[8:0] is 100000000 (i.e. 256), OD[1:0] is 11 (i.e. 4), then:

F_{OUT} = 10MHz * (256 / 10)÷ 4 = 64MHz

The design rule of three clock are::

LT7680

CCLK * 2 > = MCLK >= CCLK
 CCLK >= PCLK * 1.5

Usually TFT manufacturers will be based on their TFT characteristics to inform the best display of Pixel Clock (PCLK). Therefore, user can setup the register according to the requirements of the PCLK. And according to the above rule to setup CCLK and MCLK.

According to the different resolution of LCD panel, the PLL output should generate different clock frequency. For example, if LCD panel resolution is 640*480, the recommend values are: PCLK = 20MHz, MCLK = 40MHz, CCLK = 40MHz, then the register are setting as following:

PCLK = XI * (N / R) ÷ OD = 10MHz * (80 / 10) ÷ 4 = 20MHz	REG[05h] : OD = 11b, R = 01010b REG[06h] : N = 01010000b
MCLK = XI * (N / R) ÷ OD = 10MHz * (160 / 10) ÷ 4 = 40MHz	REG[07h] : OD = 11b, R = 01010b REG[08h] : N = 10100000b
CCLK = XI * (N / R) ÷ OD = 10MHz * (160 / 10) ÷ 4 = 40MHz	REG[09h] : OD = 11b, R = 01010b REG[0Ah] : N = 10100000b

Another example, if resolution is 800*480, the recommend values are: PCLK = 25MHz, MCLK = 50MHz, CCLK = 50MHz. We can setup the registers" values as following:

PCLK = XI * (N / R) ÷ OD = 10MHz * (100 / 10) ÷ 4 = 25MHz	REG[05h] : OD = 11b, R = 01010b REG[06h] : N = 01100100b
MCLK = XI * (N / R) ÷ OD = 10MHz * (200 / 10) ÷ 4 = 50MHz	REG[07h] : OD = 11b, R = 01010b REG[08h] : N = 11001000b
CCLK = XI * (N / R) ÷ OD = 10MHz * (200 / 10) ÷ 4 = 50MHz	REG[09h] : OD = 11b, R = 01010b REG[0Ah] : N = 11001000b

Registers	640*480	800*480
REG[05h], PPLLC1	11010100b	11010100b
REG[06h], PPLLC2	01010000b	01100100b
REG[07h], MPLLC1	11010100b	11010100b
REG[08h], MPLLC2	10100000b	11001000b
REG[09h], CPLLC1	11010100b	11010100b
REG[0Ah], CPLLC1	10100000b	11001000b

Table 1-3: PLL Register Setting Example

1.2 Reset

1.2.1 Power-on Reset

LT7680 embedded a Power-On-Reset for core system. It is an active low signal and may output to external circuits by RST# pin to synchronize whole system. When system power (3.3V) on, internal reset will active until internal power stable and then de-active after 256 OSC(X"tal Oscillator) clocks.

1.2.2 External Reset

LT7680 has capability to receive external reset(RST#) event to synchronize with external system. The external reset event will be admitted when RST# keep low and stable at least 256 OSC clocks.

Before the start to access LT7680, Host should check it's Status Register(STSR) bit [1], i.e. operation mode status bit, and make sure it's in "Normal operation state".

RST#	
+	256 Clocks
Figu	re 1-1: External Reset Signal

1.2.3 Software Reset

If the Host write registers REG[00h] bit0 to 1, the LT7680 will be reset by software. The software reset will only reset the internal state machine of LT7680, and the other registers values will not be affected or cleared. After the software reset is complete, the REG[00h] bit0 will automatically be cleared to 0.

2. Host Interface

LT7680 is control by external Host and through the host interface to access LT7680"s Registers and Display Memory. LT7680 provide serial 3-wires and 4-wires SPI mode for Host's communication. These interface mode is setup by PSM[2:0] pins:

PSM[2] PSM[0]	Host Interface
1 0	3-Wire SPI Mode
1 1	4-Wire SPI Mode
0 X	Invalid

Table 2-1: Host Interface Mode

Because the different MCU interfaces cannot be used at the same time, so LT7680 provides a shared pin mode for both SPI mode. Please refer to the following table:

Pin Number	3-Wires SPI	4-Wires SPI
17	SCLK	SCLK
16	GND	SDI
15	SD	SDO
11	SCS#	SCS#
19	INT#	INT#

Table 2-2: The Pin Definition of Host Interface

The following table is Host interface supporting list for LT7680 series:

 Table 2-3: Host Interface Supporting List of LT7680 Series

No.	Host Interface Mode	LT7680A-R	LT7680B-R
1	3-Wire SPI Mode	V	v
2	4-Wire SPI Mode	V	v

LT7680 supports 3-Wires and 4-wires SPI modes. The PSM[2] pin MUST connected to VDD. When PSM[0] = 0, then the 3-wires Serial SPI mode was selected. When PSM[0] = 1, then 4-wires Serial SPI mode was selected.

2.1 Serial Host Interface

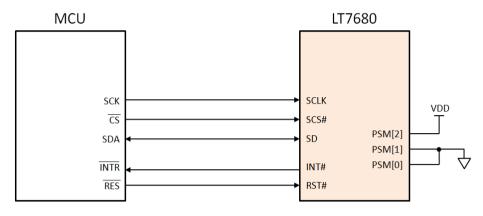


Figure 2-1: 3-Wire SPI Interface

The above circuit is the LT7680"s 3-Wires SPI interface with Host. SD signal is a bi-direction data pin for data access. The access timing and procedure are as below:

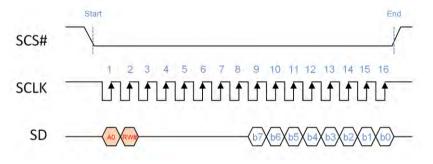


Figure 2-2: 3-Wire SPI Interface Timing

Status Register Read:

- 1. Host drive SCS#(Low) and SCLK(SPI Clock).
- 2. Host drive A0(Low), then drive RW#(High).
- LT7680 will drive the Data of Status Register (b7 ~ b0) at 9th ~ 16th Clock. Then Host will get the content of Status Register.

Write Register's Address:

- 1. Host drive SCS#(Low) and SCLK.
- 2. Host drive A0(Low), then drive RW#(Low).
- 3. Host drive the Register's Address (b0 ~ b7) at 9^{th} ~ 16^{th} Clock to LT7680.

Write Data to Register or Memory:

- 1. Host drive SCS#(Low) and SCLK.
- 2. Host drive A0(High), then drive RW#(Low).
- 3. Host drive the Data at $9^{th} \sim 16^{th}$ Clock to LT7680. i.e. Data will be stored in Register or Memory.

Read Register's Data:

- 1. Host drive SCS#(Low) and SCLK.
- 2. Host drive A0(High), then drive RW#(High).
- LT7680 will drive the Data of Register at 9th ~ 16th Clock. Then Host will get the content of Register.

The 4-Wires SPI is almost same as 3-Wires. The difference is its data line input and output are separate. The interface circuit diagram and Timing are as follows:

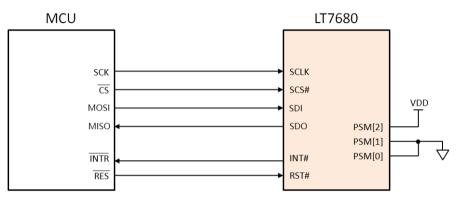


Figure 2-3: 4-Wire SPI Interface

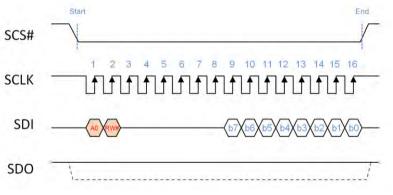


Figure 2-4: 4-Wire SPI Interface Write Timing

The above Timing diagram is the Write Cycle of 4-Wires SPI. When Host drive A0(Low) and RW#(Low), that"s means Host write Register's Address. When Host drive A0(High), then RW#(Low) that"s means Host write data to Register or Display RAM.

The following Timing diagram is the Read Cycle of 4-Wires SPI. When Host drive A0(Low) and RW#(High), that"s means Host want to read the data of Status Register. LT7680 will drive the Data of Status Register (b7 ~ b0) at 9th ~ 16th Clock. Then Host will get the data of Status Register. When Host drive A0(High), then RW#(High) that"s means Host want to read the data of Command Register. LT7680 will drive the Data of Command Register (b7 ~ b0) at 9th ~ 16th Clock for Host. Of course, Host will get the content of Command Register.

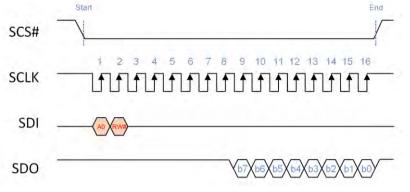


Figure 2-5: 4-Wire SPI Interface Read Timing

2.2 Display Input Data Format

LT7680 supports Monochrome, 256 color, 65K color and 256K color for TFT panel. The data for RGB colors are arranged in Display RAM as follows:

- 1bpp : Monochrome (1bit/pixel)
- 8bpp : Color RGB 3:3:2 (1 byte/pixel)
- 16bpp : Color RGB 5:6:5 (2bytes/pixel)
- 18bpp : Color RGB 6:6:6 (3bytes/pixel, or 4bytes/pixel)

The following examples will be based on 8bits MCU, 16bits MCU and display color (RGB) in different data format.

2.2.1 Input Data without Opacity (RGB)

Order	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	P ₇	P ₆	P ₅	P ₄	P ₃	P ₂	P ₁	P ₀
2	P ₁₅	P ₁₄	P ₁₃	P ₁₂	P ₁₁	P ₁₀	P ₉	P ₈
3	P ₂₃	P ₂₂	P ₂₁	P ₂₀	P ₁₉	P ₁₈	P ₁₇	P ₁₆
4	P ₃₁	P ₃₀	P ₂₉	P ₂₈	P ₂₇	P ₂₆	P ₂₅	P ₂₄
5	P ₃₉	P ₃₈	P ₃₇	P ₃₆	P ₃₅	P ₃₄	P ₃₃	P ₃₂
6	P ₄₇	P ₄₆	P ₄₅	P ₄₄	P ₄₃	P ₄₂	P ₄₁	P ₄₀

Table 2-4: 8bits MCU, 1bpp Monochrom Mode

Table 2-5: 8bits MCU, 8bpp Mode (RGB 3:3:2)

Order	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	R_0^7	R_0^6	R_0^5	G_0^7	G_0^6	${\sf G_0}^5$	B_0^7	B ₀ ⁶
2	R_{1}^{7}	R_1^6	R_1^5	${G_1}^7$	G_1^6	G1 ⁵	B ₁ ⁷	B1 ⁶
3	R_2^7	R_2^{6}	R_2^{5}	G_2^7	G_2^{6}	G_2^{5}	B_2^7	B ₂ ⁶
4	R_3^7	R_3^6	R_3^5	G_3^7	G_3^6	G_3^5	B_3^7	B_3^6
5	R_4^7	R_4^6	R_4^5	G_4^7	G_4^6	G_4^5	B4 ⁷	B4 ⁶
6	${\sf R_5}^7$	R_5^6	${\sf R_5}^5$	${\sf G_5}^7$	${\sf G_5}^6$	${\sf G_{5}}^{5}$	${\sf B_5}^7$	B5 ⁶

Table 2-6: 8bits MCU, 16bpp Mode (RGB 5:6:5)

Order	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	G_0^4	G_0^3	G_0^2	B_0^7	B_0^6	B_0^5	B_0^4	B_0^3
2	R_0^7	R_0^6	R_0^5	R_0^4	R_0^3	G_0^7	G_0^6	G_0^{5}
3	G_1^4	G ₁ ³	G_1^2	B ₁ ⁷	B1 ⁶	B1 ⁵	B1 ⁴	B1 ³
4	R_1^7	R1 ⁶	R1 ⁵	R_1^4	R_1^3	G_1^7	G_1^6	G1 ⁵
5	G_2^4	G_2^3	G_2^2	B ₂ ⁷	B ₂ ⁶	B_2^5	B_2^4	B ₂ ³
6	R_2^7	R_2^6	R_2^5	R_2^4	R_2^3	G_2^7	G_2^6	G ₂ ⁵

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	P ₇	P ₆	P5	P ₄	P ₃	P ₂	P ₁	P ₀
2	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	P ₁₅	P ₁₄	P ₁₃	P ₁₂	P ₁₁	P ₁₀	P ₉	P ₈
3	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	P ₂₃	P ₂₂	P ₂₁	P ₂₀	P ₁₉	P ₁₈	P ₁₇	P ₁₆
4	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	P ₃₁	P ₃₀	P ₂₉	P ₂₈	P ₂₇	P ₂₆	P ₂₅	P ₂₄
5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	P ₃₉	P ₃₈	P ₃₇	P ₃₆	P ₃₅	P ₃₄	P ₃₃	P ₃₂
6	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	P ₄₇	P ₄₆	P ₄₅	P ₄₄	P ₄₃	P ₄₂	P ₄₁	P ₄₀

Table 2-7: 16bits MCU, 1bpp Mono Mode -1

Table 2-8: 16bits MCU, 1bpp Mono Mode -2

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	P ₁₅	P ₁₄	P ₁₃	P ₁₂	P ₁₁	P ₁₀	P ₉	P ₈	P ₇	P ₆	P ₅	P ₄	P ₃	P ₂	P ₁	P ₀
2	P ₃₁	P ₃₀	P ₂₉	P ₂₈	P ₂₇	P ₂₆	P ₂₅	P ₂₄	P ₂₃	P ₂₂	P ₂₁	P ₂₀	P ₁₉	P ₁₈	P ₁₇	P ₁₆
3	P ₄₇	P ₄₆	P ₄₅	P ₄₄	P ₄₃	P ₄₂	P ₄₁	P ₄₀	P ₃₉	P ₃₈	P ₃₇	P ₃₆	P ₃₅	P ₃₄	P ₃₃	P ₃₂
4	P ₆₃	P ₆₂	P ₆₁	P ₆₀	P ₅₉	P ₅₈	P ₅₇	P ₅₆	P ₅₅	P ₅₄	P ₅₃	P ₅₂	P ₅₁	P ₅₀	P ₄₉	P ₄₈
5	P ₇₉	P ₇₈	P77	P ₇₆	P ₇₅	P ₇₄	P ₇₃	P ₇₂	P ₇₁	P ₇₀	P ₆₉	P ₆₈	P ₆₇	P ₆₆	P ₆₅	P ₆₄
6	P ₉₅	P ₉₄	P ₉₃	P ₉₂	P ₉₁	P ₉₀	P ₈₉	P ₈₈	P ₈₇	P ₈₆	P ₈₅	P ₈₄	P ₈₃	P ₈₂	P ₈₁	P ₈₀

Table 2-9: 16bits MCU, 8bpp Mode -1 (RGB 3:3:2)

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	R_0^7	R_0^6	R_0^5	G_0^7	G_0^{6}	${G_0}^5$	B_0^{7}	B ₀ ⁶
2	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	R_1^7	R_1^6	R1 ⁵	G_1^7	G_1^6	G1 ⁵	B ₁ ⁷	B1 ⁶
3	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	R_2^7	R_2^6	R_2^5	G_2^7	G ₂ ⁶	G ₂ ⁵	B ₂ ⁷	B ₂ ⁶
4	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	R_3^7	R_3^6	R_3^5	G_3^7	G_3^6	G_3^5	B ₃ ⁷	B ₃ ⁶
5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	R_4^7	R_4^6	R_4^5	G_4^7	G_4^6	G4 ⁵	B_4^7	B4 ⁶
6	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	${\sf R_5}^7$	R_5^6	R_5^5	G_5^7	G_5^{6}	${\sf G_{5}}^{5}$	B_5^7	B ₅ ⁶

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	R_1^7	R_1^6	R ₁ ⁵	G_1^7	G_1^6	G1 ⁵	B1 ⁷	B1 ⁶	R_0^7	R_0^6	R_0^5	G_0^7	G_0^6	G_0^5	B_0^7	B_0^6
2	R_3^7	R_3^6	R_3^5	G_3^7	G_3^6	G ₃ ⁵	${\sf B_{3}}^{7}$	B_3^6	R_2^7	R_2^6	R_2^5	G_2^7	G_2^{6}	G_2^{5}	B_2^7	B ₂ ⁶
3	R_5^7	R_5^6	R_5^5	G_5^7	${\sf G_5}^6$	G ₅ ⁵	${\sf B_5}^7$	B_5^6	R_4^7	R_4^6	R_4^5	G4 ⁷	G_4^6	G4 ⁵	B4 ⁷	B4 ⁶
4	R_{7}^{7}	R_7^6	R ₇ ⁵	G ₇ ⁷	G_7^6	G ₇ ⁵	B ₇ ⁷	B ₇ ⁶	R_6^7	R_6^6	R_6^5	G_6^7	${\sf G_6}^6$	${\sf G_{6}}^{5}$	B_6^7	B_6^6
5	R_9^7	R_9^6	R_9^5	G_9^7	G_9^6	G ₉ ⁵	B_9^7	B_9^6	R_8^7	R_8^6	R_8^5	G ₈ ⁷	G ₈ ⁶	G ₈ ⁵	B_8^7	B_8^6
6	R_{11}^{7}	R_{11}^{6}	R_{11}^{5}	${G_{11}}^7$	$G_{11}^{\ \ 6}$	G ₁₁ ⁵	B ₁₁ ⁷	B ₁₁ ⁶	R_{10}^{7}	R_{10}^{6}	R_{10}^{5}	${G_{10}}^7$	${G_{10}}^{6}$	${G_{10}}^5$	B ₁₀ ⁷	B ₁₀ ⁶

Table 2-10: 16bits MCU, 8bpp Mode -2 (RGB 3:3:2)

Note: The Mode-1 and Mode 2 is determined by bit[7:6] of Register[02h], please refer to the Cpater-13 Reregister Description.

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	R_0^7	R_0^6	R_0^5	R_0^4	R_0^3	G_0^7	G_0^6	G_0^{5}	G_0^4	G_0^3	G_0^2	B_0^7	B_0^6	B0 ⁵	B_0^4	B_0^3
2	R_1^7	R_1^6	R_1^5	R_1^4	R_1^3	G ₁ ⁷	G_1^6	G1 ⁵	G_1^4	G_1^3	G_1^2	B ₁ ⁷	B1 ⁶	B1 ⁵	B1 ⁴	B1 ³
3	R_2^7	R_2^6	R_2^5	R_2^4	R_2^3	G ₂ ⁷	G_2^{6}	G2 ⁵	G_2^4	G_2^3	G_2^2	B ₂ ⁷	B ₂ ⁶	B ₂ ⁵	B_2^4	B ₂ ³
4	R_3^7	R_3^6	R_3^5	R_3^4	R_3^3	G_3^7	G_3^6	G_3^5	G_3^4	G_3^3	G_3^2	B_3^7	B_3^6	B ₃ ⁵	B_3^4	B_3^3
5	R_4^7	R_4^6	R_4^5	R_4^4	R_4^3	G_4^7	G_4^{6}	G_4^{5}	G_4^4	G_4^3	G_4^2	B_4^7	B_4^6	B4 ⁵	B_4^4	B ₄ ³
6	${\sf R_5}^7$	R_5^6	R_5^5	R_5^4	R_5^3	G_5^7	${\sf G_5}^6$	${\sf G_5}^5$	G_5^4	G_5^3	G_5^2	${\sf B_5}^7$	B_5^6	${\sf B_5}^5$	B_5^4	B_5^3

Table 2-11: 16bits MCU, 16bpp Mode (RGB 5:6:5)

2.2.2 Input Data with Opacity (αRGB)

.T7680

LT7680 provide a palette of 64 simultaneous colors from a total of 4096 different colors with opacity attribute for OSD (On-Screen-Display) application. User may load preferred color into embedded color palette then pick it up by index color. The α value stands for opacity.

Order	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	α_1^3	α_1^2		In	dex colo	r of pixel	0	
2	α_3^3	α_3^2		In	dex colo	r of pixel	1	
3	α_5^3	α_5^2		In	dex colo	r of pixel	2	
4	α_7^3	α_7^2		In	dex colo	r of pixel	3	
5	α_9^3	α_9^2		In	dex colo	r of pixel	4	
6	α_{11}^{3}	α_{11}^2		In	dex colo	r of pixel	5	

Table 2-12: 8bits MCU, 8bpp Mode (alndex 2:6)

 $\alpha_x^3 \alpha_x^2$: 0 \rightarrow 100%, 1 \rightarrow 20/32, 2 \rightarrow 11/32, 3 \rightarrow 0

Table 2-13: 8bits MCU, 16bpp Mode (αRGB 4:4:4:4)

Order	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	G_0^{7}	G_0^6	G_0^5	G_0^4	B_0^7	B_0^6	B_0^5	B ₀ ⁴
2	α_0^3	α_0^2	α_0^1	α_0^0	R_0^7	R_0^6	R_0^5	R_0^4
3	G ₁ ⁷	G_1^6	G1 ⁵	G_1^4	B ₁ ⁷	B1 ⁶	B1 ⁵	B1 ⁴
4	α_1^3	α_1^2	α_1^1	α_1^0	R_1^7	R_1^6	R1 ⁵	R1 ⁴
5	G_2^7	G_2^6	${\sf G_2}^5$	G_2^4	B ₂ ⁷	B2 ⁶	B ₂ ⁵	B ₂ ⁴
6	α_2^3	α_2^2	α_2^1	α_2^0	R_2^7	R_2^6	R_2^5	R_2^4

 $\begin{array}{l} \alpha_{x}^{\ 3} \alpha_{x}^{\ 2} \alpha_{x}^{\ 1} \alpha_{x}^{\ 0} : 0 \rightarrow 100\%, \ 1 \rightarrow 30/32, \ 2 \rightarrow 28/32, \ 3 \rightarrow 26/32, \\ 4 \rightarrow 24/32, \ \ldots \ldots, \ 12 \rightarrow 8/32, \ 13 \rightarrow 6/32, \ 14 \rightarrow 4/32, \ 15 \rightarrow 0. \end{array}$

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	α_0^3	α_0^2		Inde	x colo	r of pi	xel 0	
2	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	α_1^3	α_1^2		Inde	x colo	r of pi	xel 1	
3	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	α_2^3	α_2^2		Inde	x colo	r of pi	xel 2	
4	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	α_3^3	α_3^2		Inde	x colo	r of pi	xel 3	
5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	α_4^3	α_4^2		Inde	x colo	r of pi	xel 4	
6	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	α_5^3	α_5^2		Inde	x colo	r of pi	xel 5	

 $\alpha_x^3 \alpha_x^2$: 0 \rightarrow 0, 1 \rightarrow 11/32, 2 \rightarrow 20/32, 3 \rightarrow 100%

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	α_0^3	α_0^2	α_0^1	α_0^0	R_0^7	R_0^6	R_0^5	R_0^4	G_0^7	G_0^6	G_0^5	G_0^4	B_0^7	B_0^6	B_0^5	B_0^4
2	α_1^3	α_1^2	α_1^1	α_1^0	R_1^7	R_1^6	R_1^5	R_1^4	G_1^7	G_1^6	G_1^5	G_1^4	B1 ⁷	B1 ⁶	B1 ⁵	B1 ⁴
3	α_2^3	α_2^2	α_2^1	α_2^0	R_2^7	R_2^6	R_2^5	R_2^4	G_2^7	G_2^{6}	G_2^{5}	G_2^4	B ₂ ⁷	B ₂ ⁶	B ₂ ⁵	B ₂ ⁴
4	α_3^3	α_3^2	α_3^1	α_3^0	R_3^7	R_3^6	R_3^5	R_3^4	G_3^7	G_3^6	G_3^5	G_3^4	B_3^7	B_3^6	B_3^5	B ₃ ⁴
5	α_4^3	α_4^2	α_4^1	α_4^0	R_4^7	R_4^6	R_4^5	R_4^4	G_4^7	G_4^{6}	G_4^5	G_4^4	B4 ⁷	B_4^6	B4 ⁵	B ₄ ⁴
6	α_5^3	α_5^2	α_5^1	α_5^0	R_5^7	R_5^6	${\sf R_5}^5$	R_5^4	${G_5}^7$	G_5^6	${\sf G_{5}}^{5}$	G_5^4	B ₅ ⁷	B_5^6	${\sf B_5}^5$	B_5^4

Table 2-15: 16bits MCU, 12bpp Mode (aRGB 4:4:4:4)

 $\alpha_x^3 \alpha_x^2 \alpha_x^1 \alpha_x^0$: 0 \rightarrow 0, 1 \rightarrow 2/32, 2 \rightarrow 4/32, 3 \rightarrow 6/32, 4 \rightarrow 8/32,, 12 \rightarrow 24/32, 13 \rightarrow 26/32, 14 \rightarrow 28/32, 15 \rightarrow 100%.

3. Display Memory

LT7680 embedded a 128Mb Display RAM. The Host(MCU) through the instructions to save the displayed data to internal Display RAM. And LT7680's internal display engine will continue to read the data of memory, then sent to TFT driver. The capacity of the Display RAM is also related to the resolutions and image layers supported. As shown in the following table:

Model	Display RAM Capacity	Resolution (Max.)	Color (Max.)	Image Layer (@Max Color)
LT7680A-R	128Mb	1280*1024	65K / 262K	6 (65K)
LT7680B-R	128Mb	480*320	65K / 262K	54 (65K)

Table 2 4. LTZCOO! Madalara	Emphandaland Diamlay	DAM Compating
Table 3-1: LT7680' Model vs.	Empedded Displa	y RAIN Capacity

The Display RAM type of LT7680 embedded is a kind of High-Speed SDRAM (Synchronous Dynamic Random Access Memory). Before the Host access the Display RAM, it must be based on the type of Display RAM to set the relevant register initialization as following steps:

- According to the Display RAM capacity and model, setup Register REG[E0h]. The value of REG[E0h] must be set according to the LT7680 model used to avoid display anomalies and image confusion. Please refer to Table 13-6 of Chapter 13.
- According to the type of Display RAM, setup Register REG[E1H], REG[E2h], REG[E3h], including setup the CAS latency, refresh interval, etc..... The typical Display RAM refresh interval is 64ms. The value of these registers are recommended according to the LT7680 model used. Please refer to Table 13-7 of Chapter 13.
- Set Register REG[E4h] Bit0 is 1, start Display RAM initialization processing.
- Read Register REG[E4h] bit0, if it becomes 1, that means initialization is complete.

3.1 Display RAM Data Structure

The image data stored in the Display RAM will be stored in different arrangement formats depending on the color (1bpp, 8bpp, 16bpp, 24bpp). Therefore, the Host writes the image data must according to these formats, the following tables are 8/16/24bpp RGB data arrangement format:

3.1.1 8bpp Display Data (RGB 3:3:2)

Addr	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0000h	R_1^7	R_1^6	R_1^5	G ₁ ⁷	G_1^6	G1 ⁵	B ₁ ⁷	B1 ⁶	R_0^7	R_0^6	R_0^5	G_0^7	G_0^6	G_0^5	B_0^7	B ₀ ⁶
0002h	R_3^7	R_3^6	R_3^5	G_3^7	G_3^{6}	G ₃ ⁵	B_3^7	B_3^{6}	R_2^7	R_2^6	R_2^5	G_2^7	G_2^{6}	G_2^5	B ₂ ⁷	B ₂ ⁶
0004h	R_5^7	R_5^6	R_5^5	${\sf G_5}^7$	G_5^{6}	${\sf G_{5}}^{5}$	${\sf B_{5}}^{7}$	B_5^6	R_4^7	R_4^6	R_4^5	G_4^7	G_4^{6}	G_4^{5}	B ₄ ⁷	B4 ⁶
0006h	R_7^7	R_7^6	R_7^5	G ₇ ⁷	G_7^6	G ₇ ⁵	B ₇ ⁷	B ₇ ⁶	R_6^7	R_6^6	R_6^5	${\sf G_6}^7$	G_6^6	G_6^5	B_6^7	B_6^6
0008h	R_9^7	${\sf R_9}^6$	R_9^5	G_9^7	G_9^{6}	G ₉ ⁵	B_9^7	B_9^6	R_8^7	R_8^6	R_8^5	G ₈ ⁷	G ₈ ⁶	G ₈ ⁵	B ₈ ⁷	B ₈ ⁶
000Ah	R_{11}^{7}	R ₁₁ ⁶	R ₁₁ ⁵	G ₁₁ ⁷	G ₁₁ ⁶	G ₁₁ ⁵	B ₁₁ ⁷	B ₁₁ ⁶	R_{10}^{7}	R ₁₀ ⁶	R ₁₀ ⁵	${G_{10}}^7$	G ₁₀ ⁶	G ₁₀ ⁵	B ₁₀ ⁷	B ₁₀ ⁶

Table 3-2: 8bpp Display Data (RGB 3:3:2)

3.1.2 16bpp Display Data (RGB 5:6:5)

Table 3-3: 16bpp Display Data (RGB 5:6:5)

Addr	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0000h	R_0^7	R_0^6	R_0^5	R_0^4	R_0^3	G_0^7	G_0^{6}	${G_0}^5$	G_0^4	G_0^3	G_0^2	B_0^7	B_0^6	B_0^5	B_0^4	B ₀ ³
0002h	R_1^{7}	R_1^6	R_1^5	R_1^4	R_1^3	G_1^{7}	G_1^{6}	G1 ⁵	G_1^4	G_1^{3}	G_1^2	B1 ⁷	B1 ⁶	B1 ⁵	B_1^4	B1 ³
0004h	R_2^7	R_2^6	R_2^5	R_2^4	R_2^3	G_2^7	G ₂ ⁶	G ₂ ⁵	G_2^4	G_2^{3}	${\sf G_2}^2$	B ₂ ⁷	B_2^{6}	B_2^{5}	B ₂ ⁴	B ₂ ³
0006h	R_{3}^{7}	R_3^6	R_3^5	R_3^4	R_3^3	G_3^{7}	G_3^{6}	G ₃ ⁵	G_3^4	G_{3}^{3}	G_3^2	B_3^7	B_3^6	${\sf B_{3}}^{5}$	B_3^4	B ₃ ³
0008h	R_4^7	R_4^6	R_4^5	R_4^4	R_4^3	G_4^7	G4 ⁶	G4 ⁵	G_4^4	G_4^3	G_4^2	B4 ⁷	B_4^6	B_4^5	B_4^4	B4 ³
000Ah	R_5^7	R_5^6	R_5^5	R_5^4	R_5^3	G ₅ ⁷	G_5^{6}	G_5^5	G ₅ ⁴	G_5^3	${\sf G_5}^2$	${\sf B_5}^7$	$B_5^{\ 6}$	B_5^{5}	B_5^4	B_5^3

3.1.3 Index Display with Opacity (aRGB 2:2:2:2)

Table 3-4: Index Display with Opacity (aRGB 2:2:2:2)

Addr	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0000h	α_1^3	α_1^2		Inde	x colo	r of pi	xel 1		α_0^3	α_0^2		Inde	x colo	r of pi	xel 0	
0002h	α_3^3	α_3^2		Inde	x colo	r of pi	xel 3		α_2^3	α_2^2		Inde	x colo	r of pi	xel 2	
0004h	α_5^3	α_5^2		Inde	x colo	r of pi	xel 5		α_4^3	α_4^2		Inde	x colo	r of pi	xel 4	
0006h	α_7^3	α_7^2		Inde	x colo	r of pi	xel 7		α_6^3	α_6^2		Inde	x colo	r of pi	xel 6	
0008h	α_9^3	αg ²		Inde	x colo	r of pi	xel 9		α_8^3	α_8^2		Inde	x colo	r of pi	xel 8	
000Ah	α_{11}^{3}	α_{11}^{2}		Index	color	of pix	el 11		α_{10}^{3}	α_{10}^2		Index	color	of pix	el 10	

 $\alpha_x^3 \alpha_x^2$: 0 \rightarrow 0, 1 \rightarrow 11/32, 2 \rightarrow 20/32, 3 \rightarrow 100%

		1	able	3-5: 1	zopp	Disp	olay v	vith C	paci	ty (RGB	4:4:4	1:4)			
Addr	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0000h	α_0^3	α_0^2	α_0^1	α_0^0	R_0^7	R_0^6	R_0^5	R_0^4	G_0^{7}	G_0^6	G_0^{5}	G_0^4	B_0^7	B_0^6	B_0^5	B_0^4
0002h	α_1^3	α_1^2	α_1^{1}	α_1^0	R_1^7	R_1^6	R_1^{5}	R_1^4	G ₁ ⁷	G1 ⁶	G1 ⁵	G_1^4	B ₁ ⁷	B_1^{6}	B1 ⁵	B1 ⁴
0004h	α_2^3	α_2^2	α_2^1	α_2^0	R_2^7	R_2^{6}	R_2^{5}	R_2^4	G_2^7	G_2^{6}	G_2^{5}	${\sf G_2}^4$	B ₂ ⁷	B_2^6	B ₂ ⁵	B_2^4
0006h	α_3^3	α_3^2	α_3^{1}	α_3^0	R_3^7	R_3^6	R_3^5	R_3^4	G_3^7	G_3^6	G_3^5	G_3^4	B ₃ ⁷	B_3^6	B ₃ ⁵	B ₃ ⁴
0008h	α_4^3	α_4^2	α_4^1	α_4^0	R_4^7	R_4^6	${\sf R_4}^5$	R_4^4	G_4^7	G_4^6	${\sf G_4}^5$	G_4^4	B4 ⁷	B_4^6	B4 ⁵	B4 ⁴
000Ah	α_5^3	α_5^2	α_5^1	α_5^0	${\sf R_5}^7$	R_5^6	R_5^5	R_5^4	G ₅ ⁷	${\sf G_{5}}^{6}$	${\sf G_{5}}^{5}$	G_5^4	B ₅ ⁷	$B_5^{\ 6}$	B_5^{-5}	B_5^4

3.1.4 12bpp Display with Opacity (αRGB 4:4:4:4)

Table 3-5: 12bpp Display with Opacity (RGB 4:4:4:4)

 $\alpha_x^{\ 3} \alpha_x^{\ 2} \alpha_x^{\ 1} \alpha_x^{\ 0} : 0 \rightarrow 0, \ 1 \rightarrow 2/32, \ 2 \rightarrow 4/32, \ 3 \rightarrow 6/32, \ 4 \rightarrow 8/32, \ \ldots , \ 12 \rightarrow 24/32, \ 13 \rightarrow 26/32, \ 14 \rightarrow 28/32, \ 15 \rightarrow 100\%.$

3.2 Color Palette RAM

Addr	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0000h	R_0^7	${\sf R_0}^6$	R_0^5	R_0^4	G_0^7	G_0^6	G_0^5	G_0^4	B_0^7	B_0^6	B_0^5	B ₀ ⁴
0002h	R_1^7	R_1^6	R_1^5	R1 ⁴	G_1^7	G_1^6	G_1^5	G_1^4	B1 ⁷	B1 ⁶	B1 ⁵	B1 ⁴
0004h	R_2^7	R_2^6	R_2^5	R_2^4	G_2^7	G_2^6	G ₂ ⁵	G_2^4	B ₂ ⁷	B2 ⁶	B ₂ ⁵	B ₂ ⁴
0006h	R_3^7	R_3^6	R_3^5	R_3^4	G_3^7	G_3^6	G_3^5	G_3^4	B ₃ ⁷	B_3^6	B ₃ ⁵	B ₃ ⁴
0008h	R_4^7	R_4^6	R_4^5	R_4^4	G_4^7	G_4^6	G_4^5	G_4^4	B ₄ ⁷	B4 ⁶	B4 ⁵	B ₄ ⁴
000Ah	${\sf R_5}^7$	${\sf R_5}^6$	R_5^5	R_5^4	${\sf G_5}^7$	${\sf G_5}^6$	G_5^5	G_5^4	${\sf B_{5}}^{7}$	B_5^{-6}	${\sf B_5}^5$	B_5^4

Table 3-6: Color Palette RAM

4. LCD Interface

LT7680 Support 16, 18bits RGB interface of TFT Panel, whether 16bpp (RGB 5:6:5) or 8bpp (RGB 3:3:2), the display data can be sent to the TFT Driver on the TFT panel through these RGB interfaces. The LT7680 LCD Display data corresponds to the RGB data as shown in the below table. The Host can setup REG[01h] Bit[4:3] to select 16bits, 18bits or 24bits resolution.

The RGB data supported by different models of LT7680 are also different. For example, if setup REG[01h] bit[4:3] = 00b (24bits), and if use LT7680 (18bits RGB supported only), then, still unable to show the 24bits effect (Full-Color). Please refer to Table 4-2 for RGB data supported by different models of LT7680.

LCD	TFT-LCD	Interface				
Data Bus	REG[01h] bit[4:3] = 10b (16bits)	REG[01h] bit[4:3] = 01b (18bits)				
PD[2]	GPIOD[6]	ВО				
PD[3]	ВО	B1				
PD[4]	B1	B2				
PD[5]	B2	B3				
PD[6]	B3	B4				
PD[7]	B4	B5				
PD[10]	G0	GO				
PD[11]	G1	G1				
PD[12]	G2	G2				
PD[13]	G3	G3				
PD[14]	G4	G4				
PD[15]	G5	G5				
PD[18]	GPIOD[7]	RO				
PD[19]	RO	R1				
PD[20]	R1	R2				
PD[21]	R2	R3				
PD[22]	R3	R4				
PD[23]	R4	R5				

Table 4-1: RGB	Intorfaco V		Display Data
Table 4-1. RGD	internace v	/J. KUD	Display Data

Model	LCD Data Bus	RGB Signal Number	Colors
	PD[23~18],		
LT7680A	PD[15~10],	R:G:B = 6:6:6	262K Color
	PD[7~23]		
	PD[23~18],		
LT7680B	PD[15~10],	R:G:B = 6:6:6	262K Color
	PD[7~23]		

Figure 4-1 is the timing diagram of LT7680 TFT-LCD output signals. In addition to the RGB data lines of above mentioned, LT7680 also provides PCLK (Panel Scan Clock), VSYNC Pulse, HSYNC Pulse and Data Enable signal. The frequency of PCLK is setup by REG[05h] and REG[06h]. Please refer to the description in Section 1.1 and Chapter 14th.

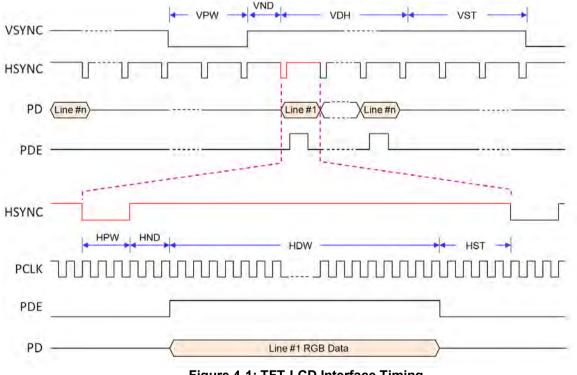


Figure 4-1: TFT-LCD Interface Timing

5. Display Function

5.1 Color Bar

The LT7680 provides a color bar display, which can be used as a display test and does not require display memory. The function can be performed by Host to set REG[12h] bit5 to 1.

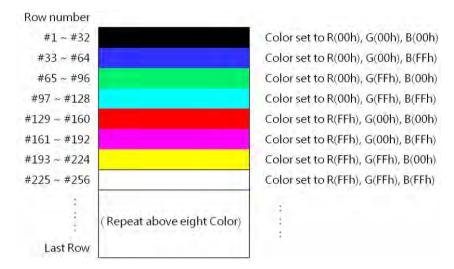


Figure 5-1: Color Bar

5.2 Main Window

The LCD main window size can be defined by setting Registers REG[14h] to REG[1Fh]. At first, Host can save different images in memory buffer. Then setup the related Registers (REG[20h] ~ REG[29h) to select a different buffer for show different images.

5.2.1 Configure Display Image Buffer

Display RAM is used to store the displayed image. And how many images can be stored is determined by the image resolution and color. For example, the image resolution is 800*480, with 65K color (16bits), then 13 image data can be stored in 128Mbits Display RAM:

```
Number of Image = (128*1024*1024) / (800*480*16) = 21.8
```

If the image resolution is 480*272, with 65K color (16bits), then 34 image data can be stored in 128Mbits Display RAM:

Number of Image =
$$(128*1024*1024) / (480*272*16) = 64.3$$

LT7680 must set the Starting Position of the Canvas, Width and the Working window range before writing the image data to Display RAM. And also set the Working window range. Please refer the registers REG[50H] to REG[5Eh] for detail description.

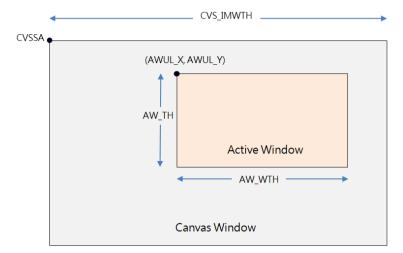


Figure 5-2: Canvas Window and Active Window

5.2.2 Write Image Data to Display Image Buffer

The following diagram is a flowchart that writes image data to Display RAM and displays the main window image on an LCD screen:

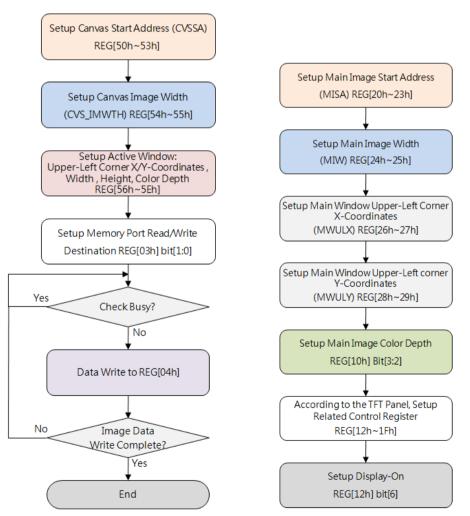


Figure 5-3: Write Image Data to Display Image Buffer

5.2.3 Display Main Window Image

Main window displays the image was selected by setting the Registers REG[20h] ~ REG[29h]. That is, by the register setting to select image within the Display RAM which images to be displayed. The following figure is the process for setting up the main window:

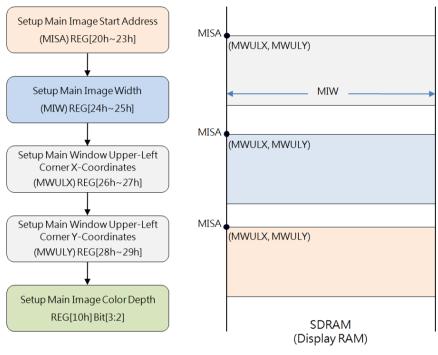


Figure 5-4: Setup and Select Main Window Image

5.3 Picture-In-Picture (PIP)

LT767 supports Picture-in-Picture feature. User can display secondary image(PIP-1) on the main screen(PIP-2) without to overwrite the image data of the main display window. If both images are overlapping, then the PIP-1 images is always on the top of PIP-2.

The size and location of the picture window is set by the register REG[2Ah] ~ REG[3BH] and REG[11h]. Because the parameters of PIP-1 and PIP-2 are using the same registers, so REG[10H] Bit4 is used to choose PIP-1 or PIP-2 will be setup by these registers. And in the use of PIP function must first set the relevant parameters of the display window.

The unit of PIP windows sizes and start positions is 4 pixels in horizontal, and 1 pixel in vertical. In PIP mode, LT7680 does not support the overlapping of transparent display, and when REG[12h] Bit3 VDIR = 1, then PIP windows, graphics cursors and text cursors functions will be automatically prohibited.

5.3.1 PIP Window Setting

For using PIP feature, Host has to setup the PIP Image Start Address, Image Width, Display X/Y coordinates, Image X/Y coordinates, PIP Windows Color Depth, PIP Window Width and PIP Window Height registers. The following figure is the flowchart for setting the PIP and show the corresponding display to main window.

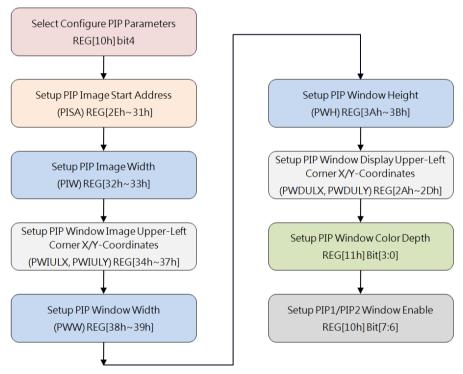


Figure 5-5: Initialize PIP Function

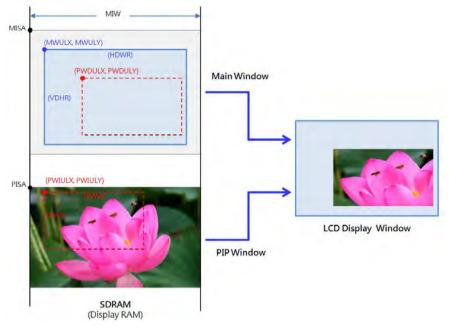


Figure 5-6: PIP Example

5.3.2 PIP Display Position and PIP Image Position

In the previous section of the PIP display flowchart, you can know that the display window can be set PWDULX and PWDULY to change the final position on the LCD screen. Setting PISA, PIW, PWIULX, PWIULY can change the position of the PIP images that you want to display. These actions do not change any image data that exists in Display RAM, but can be easily changed to be displayed picture on the panel. The following example shows a main window with a PIP window. You can show the different PIP image by changing the PIP Position Register(PWDULX and PWDULY) of the display window.

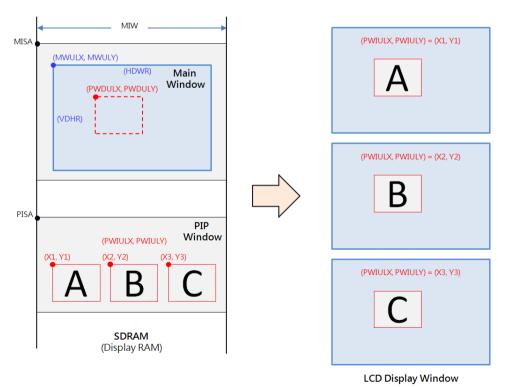


Figure 5-7: Select Different PIP image on the Screen

LT7680 DS ENG / V2.0

5.4 Image Rotate and Mirror

Usually LCD displays are refreshed horizontally (from left to right and from top to bottom), and the displayed images are stored in the same way. LT7680 provides the ability to Rotate and Mirror, in which the rotate feature rotates the displayed image in the counterclockwise direction of 90° or 180°. The mirror feature is the image that is displayed from right to left to design mirroring. LT7680 embedded a hardware controller to execute Rotation and Mirroring features, so it's greatly saving the Host processing time.

The REG[02H] bit[2:1] are used to control the Memory Store Direction in which the Host write Image Data to Display RAM. And these two bits is available only for Graphic Mode.

00b: Left \rightarrow Right, then Top \rightarrow Bottom (Original)

01b: Right \rightarrow Left, then Top \rightarrow Bottom (Horizontal flip)

10b: Top \rightarrow Bottom, then Left \rightarrow Right (Rotate right 90°& Horizontal flip)

11b: Bottom \rightarrow Top, then Left \rightarrow Right (Rotate left 90°)

The following are some examples for Image Rotate and Mirror:

Figure 5-8: Original Image – without Rotation

1. When VDIR (REG[12h] bit3)= 0

When set REG[02H] bit[2:1] to 00b, its definition is to write image data from left to right and then top to bottom. This will show the original image that same as above. If set REG[02H] bit[2:1] to 01b, it means writing image data from right to left and then from top to bottom. So the image displayed will be a horizontal mirror image of the following:

Figure 5-9: Horizontal Mirror Image

When set REG[02H] bit[2:1] to 10b, it means writing image data from top to bottom and then left to right. So the displayed image will be rotated to the right 90° and then flipped horizontally as following Figure:

Figure 5-10: Rotated to the Right 90° and Flipped Horizontally

When set REG[02H] bit[2:1] to 11b, the write image is written from bottom to top and then left to right. So the display image will rotate 90° to the left as following Figure:

Figure 5-11: Rotate 90° to the Left

2. When VDIR (REG[12h] bit3) = 1,

When set REG[02h] bit[2:1] to 00b, the display image will be as following Figure:

Figure 5-12: Flip with Vertical LT7680_DS_ENG / V2.0

When set REG[02h] bit[2:1] to 01b, the display image will be rotated 180°:

Figure 5-13: Rotated 180°

When set REG[02h] bit[2:1] to 10b, The displayed image will rotate 90° to the left:

Figure 5-14: Rotate 90° to the Left

When set REG[02h] bit[2:1] to 11b, the display image will be as following Figure:

Figure 5-15: Rotated to the Left 90° then Vertically Mirrored

6. Geometric Drawing Engine

6.1 Drawing Circle and Ellipse

LT7680 supports the function of drawing Circles and Ellipses. As long as the Host sets the Circle or the Ellipse Center (REG[7Bh ~ 7Eh]), Radius (REG[77h ~ 7Ah]), and the Color of the Circle (REG[D2h ~ D4h]), then specify REG[76h] bit[5:4] to 00b. Finally enable the Drawing Circle function (REG[76h] bit7 = 1), then LT7680 will drawing a Circle or Ellipse on the screen in automatically.

Host can also set REG[76h] Bit6 to 1 to fill a Circle or an Ellipse. Therefore, Host(MCU) does not need use many resources to calculate the location and a series of writing data to display memory. The Ellipse has two radius. For drawing Circle, just set the long radius and short radius register to the same value (R1 = R2).

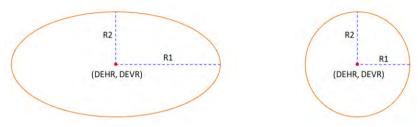


Figure 6-1: Drawing Ellipse and Circle

The flowchart for drawing circles and drawing ellipses is as follows. The left flowchart is draw a circle or ellipses without fill, and the right flowchart is with fill. Please note the center point of Circle must be located in the Active Window.

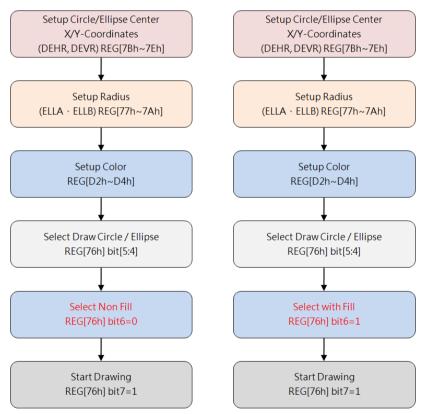


Figure 6-2: Flowchart of Drawing Circle and Ellipse

6.2 Drawing Curve

LT7680 supports the function of drawing Curve. As long as the Host sets the Curve Center (REG[7Bh ~ 7Eh]), Radius (REG[77h ~ 7Ah]), and the Color of the Curve (REG[D2h ~ D4h]), then specify REG[76h] bit[5:4] to 01b. Finally enable the Drawing Curve function (REG[76h] bit7 = 1), then LT7680 will drawing a one-fourth Curve on the screen in automatically.

Figure 6-3: Drawing Curve and one-fourth Ellipse

The flowchart for drawing a Curve or drawing one-fourth Ellipses is as follows. The left flowchart is draw a Curve or one-fourth Ellipse without fill, and the right flowchart is with fill. Please note the center point of Curve must be located in the Active Window.

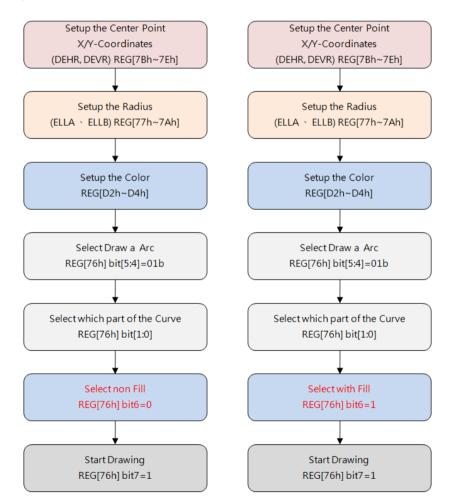


Figure 6-4: Flowchart of Drawing Curve and one-fourth Ellipse

6.3 Drawing Rectangle

For Drawing a Rectangle, the Host has to sets the Start Point Coordinates (REG[68h ~ 6Bh]), Stop Point Coordinates (REG[6Ch ~ 6Fh]), and the Color of the Rectangle (REG[D2h ~ D4h]), then specify REG[76h] bit[5:4] to 10b. Finally enable the drawing function (REG[76h] bit7 = 1), then LT7680 will drawing a Rectangle on the screen in automatically. Host can also set REG[76h] Bit6 to 1 to fill the Rectangle with specified color.

ol 1. n. t. 1. (
Start Point	(DLHSR, DLVSR)		
	(DLHER \ DLVER)		
	Er	d Point	

Figure 6-5: Drawing Rectangle

The following figure is the flowchart of drawing Rectangle. The left flowchart is draw a Rectangle without fill, and the right flowchart is with fill. Please note the Start and Stop point must be located in the Active Window.

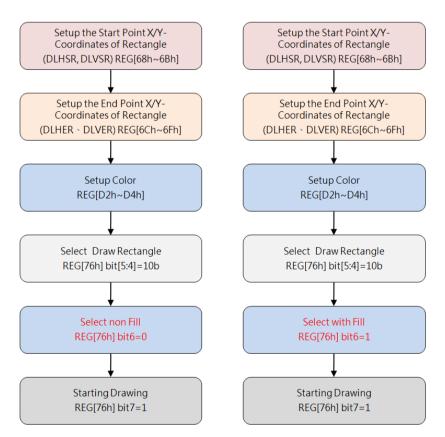


Figure 6-6: Flowchart of Drawing a Rectangle

6.4 Draw Line

For Drawing a Line, the Host has to sets the Start Point Coordinates (REG[68h ~ 6Bh]), Stop Point Coordinates (REG[6Ch ~ 6Fh]), and the Color of the Line (REG[D2h ~ D4h]), then specify and specify REG[67h] bit1 to 0. Finally enable the Line Drawing function (REG[67h] bit7 = 1), then LT7680 will drawing a Line on the screen in automatically.

The following figure is the flowchart of Line drawing. Please note the Start and Stop point must be located in the Active Window.

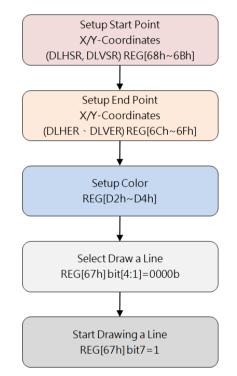


Figure 6-7: Flowchart of Drawing a Line

6.5 Drawing Triangle

For Drawing a Triangle, the Host has to sets the 1^{ST} Point Coordinates (REG[68h ~ 6Bh]) of Triangle, 2^{nd} Point Coordinates (REG[6Ch ~ 6Fh]), 3^{rd} Point Coordinates (REG[70h ~ 73h]), and the Color of the Triangle (REG[D2h ~ D4h]), then specify REG[67h] bit1 to 1. Finally enable the drawing function (REG[67h] bit7 = 1), then LT7680 will drawing a Triangle on the screen in automatically. Host can also set REG[67h] bit5 to 1 to fill the Rectangle with specified color.

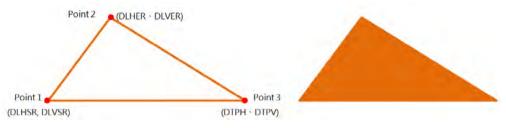


Figure 6-8: Drawing Triangle

The following figure is the flowchart of Triangle drawing. The left flowchart is draw a Triangle without fill, and the right flowchart is with fill. Please note the three points must be located in the Active Window.

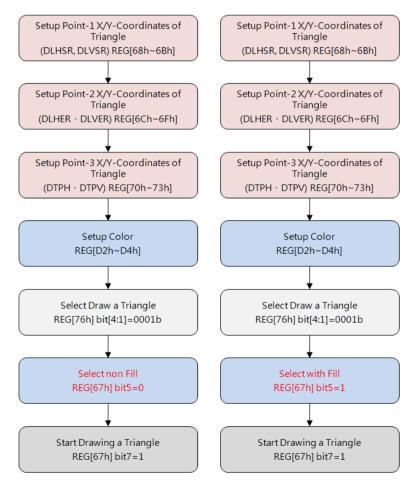


Figure 6-9: Flowchart of Drawing a Triangle

6.6 Drawing Rounded-Rectangle

For Drawing a Rounded-Rectangle, the Host has to sets the Start Point Coordinates (REG[68h ~ 6Bh]), Stop Point Coordinates (REG[6Ch ~ 6Fh]), the Rounded Radius (REG[77h ~ 7Ah]) and the Color (REG[D2h ~ D4h]), then specify REG[76h] bit[5:4] to 11b. Finally enable the drawing function (REG[76h] bit7 = 1), then LT7680 will drawing a Rounded-Rectangle on the screen in automatically. Host can also set REG[76h] Bit6 to 1 to fill the Rounded-Rectangle with specified color. The following figure is a schematic of a Rounded-Rectangle, in which the R1 represents the long axis radius, and the R2 represents the short axis radius.

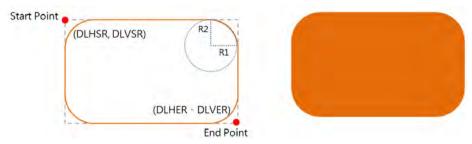


Figure 6-10: Drawing Rounded Triangle

Note1: DLHER-DLHSR must large than 2*R1 +1

Note2: DLVER-DLVSR must large than 2*R2 +1

The following figure is the flowchart of drawing Rounded-Rectangle. The left flowchart is draw a Triangle without fill, and the right flowchart is with fill. Please note the Start and Stop point must be located in the Active Window.

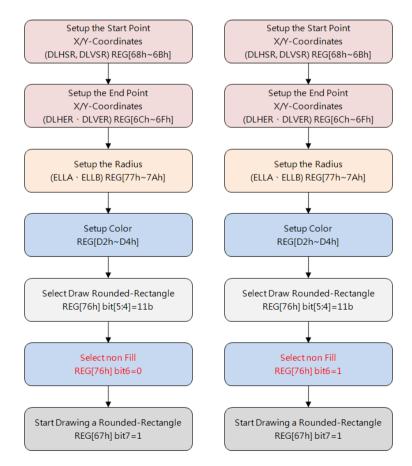


Figure 6-11: Flowchart of Drawing a Rounded-Rectangle

7. Block Transfer Engine (BTE)

LT7680 has a embedded high performance hardware engine - Block Transfer Engine (BTE), it is designed to accelerate data Loading, Transferring, and additional Logic Processing. BTE supports 13 basic BTE Operations (Table 7-1), as well as additional functions of Raster Operation (ROP, Table 7-2), Chroma Key, Color Expansion, and so on. After getting properly set and enabled, BTE can perform the required operations and functions automatically and rapidly regardless of MCU. BTE can extremely release MCU working loads and resources, further to greatly improve the performance for all the system.

If a data block needs to be loaded, moved, processed at one times, user could consider to use BTE, by any available combinations of basic BTE Operations and additional Functions as well as various available logic combinations of Source and Destination, further to achieve many useful application purposes. Once the BTE started under proper settings, it will keep active working (busy) until the working completed. There are two ways to get BTE working status, the one is to monitor Hardware Interruption: connecting INT# to MCU, once the interruption presented, then MCU responds and starts the routine to get the Interruption Source by checking REG[0Ch]; the another one is to check corresponding Flag Bits of register BTE_CTRL0 (REG[90h]) Bit4, or Status Register (STSR) Bit3.

BTE Operation Code REG[91h] Bits [3:0]	BTE Operation Description	
0000b	MCU Write with ROP.	
0010b	Memory Copy (move) with ROP.	
0100b	MCU Write with chroma keying (without ROP)	
0101b	Memory Copy (move) with chroma keying (without ROP)	
0110b	Pattern Fill with ROP	
0111b	Pattern Fill with chroma keying (without ROP)	
1000b	MCU Write with Color Expansion (without ROP)	
1001b	MCU Write with Color Expansion and chroma keying (without ROP)	
1010b	Memory Copy with opacity (without ROP)	
1011b	MCU Write with opacity (without ROP)	
1100b	Solid Fill (without ROP)	
1110b	Memory Copy with Color Expansion (without ROP)	
1111b	Memory Copy with Color Expansion and chroma keying (without ROP)	
Other Combinations	Reserved	

Table 7-1: BTE Operation

ROP Function Code REG[91h] bit[7:4]	Function Description (Boolean)
0000b	0 (Blackness)
0001b	~S0 · ~S1 or ~ (S0+S1)
0010b	~S0 · S1
0011b	~S0
0100b	S0 · ~S1
0101b	~S1
0110b	S0^S1
0111b	~S0+~S1 or ~ (S0 · S1)
1000b	S0 · S1
1001b	~ (S0^S1)
1010b	S1
1011b	~\$0+\$1
1100b	S0
1101b	S0+~S1
1110b	S0+S1
1111b	1 (Whiteness)

Table 7-2: ROP Function

Note:

- 1. Source 0 (S0) Data: comes from MCU Writing or Memory
- 2. Source 1 (S1) Data: comes from Memory,
- 3. Destination (DT) Data: be wrote to Memory
- 4. Memory means internal Display RAM
- 5. Memory, S0, S1, DT, these Short Names will be always quoted in this Chapter. For Example: If ROP function REG[91h] bit[7:4]=0xCh, then "DT = S0", means "Transfer Source 0 data to Destination"; If ROP function REG[91h] bit[7:4]=0xEh, then "DT = S0 + S1", means "Source 0 data + Source 1 data then transfer to Destination"

ROP Function	Start Bit Position for Color Expansion BTE operation code = 1000/1001/1110/1111		
REG[91h] bit[7:4]	16bits MCU Interface	8bits MCU Interface	
0000b	Bit0	Bit0	
0001b	Bit1	Bit1	
0010b	Bit2	Bit2	
0011b	Bit3	Bit3	
0100b	Bit4	Bit4	
0101b	Bit5	Bit5	
0110b	Bit6	Bit6	
0111b	Bit7	Bit7	
1000b	Bit8	Invalid	
1001b	Bit9	Invalid	
1010b	Bit10	Invalid	
1011b	Bit11	Invalid	
1100b	Bit12	Invalid	
1101b	Bit13	Invalid	
1110b	Bit14	Invalid	
1111b	Bit15	Invalid	

Table 7-3: Color Expansion Function

7.1 BTE Basic Settings

The BTE basic settings for all two Sources and one Destination, including Memory Start Address, Image Width, and Start Point Position (Coordinate) for each, could be defined by following registers:

- 1. S0 Address Registers: REG [93h], REG[94h], REG[95h], REG[96h], REG[97h], REG [98h], REG[99h], REG[99h], REG[92h], REG[92h]
- 2. S1 Address Registers: REG [9Dh], REG[9Eh], REG[9Fh], REG[A0h], REG [A1h], REG[A2h], REG[A3h], REG[A4h], REG[A5h], REG[A6h]
- 3. DT Address Registers: REG [A7h], REG[A8h], REG[A9h], REG[AAh], REG [ABh], REG[ACh], REG[ADh], REG[AEh], REG[AFh], REG[B0h]

7.2 Color Palette RAM

The LT7680 has a embedded Color Palette RAM for 8-bits Alpha Blend function, organized by 64*12bits. Color Index is an Address of Color Palette RAM space to save a series of 12-bits Word of needed color data (refer to Figure 7-1). Color Palette RAM must be written by 128 Bytes (8-bits per Byte) sequence in one times, but cannot be read, bit[7:4] of the Byte with Even Sequence Number will be discarded. The diagram Figure 7-2 shows the initialization flow.

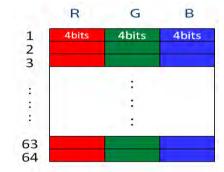


Figure 7-1: Color Palette RAM Organization

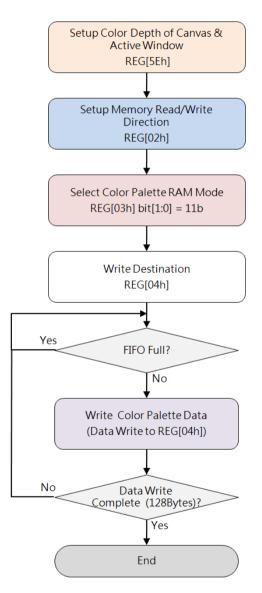


Figure 7-2: Flow Chart of Color Palette RAM Initialization

7.3 BTE Operation Overview

7.3.1 MCU Write with ROP

This Operation supports 16 ROP functions, BTE engine will perform the ROP function automatically then write the result data to DT.

7.3.2 Memory Copy with ROP

This Operation supports 16 ROP functions, but supports data transfer in positive direction only.

7.3.3 Solid Fill

This Operation fills a specified Rectangle Area of DT with a Solid Color data defined in the Foreground Color Register.

7.3.4 Pattern Fill

This Operation duplicates to fill DT with an 8*8 or16*16 pixel Pattern.

7.3.5 Pattern Fill with Chroma Key

This Operation duplicates to fill DT with an 8*8 or16*16 pixel Pattern, combined with Chroma Key function but without ROP function. If Pattern Color is equal to the Chroma Key Color, which is defined in Background Color Register, destination BTE Window will not be changed.

7.3.6 MCU Write with Chroma Key

This Operation supports data transfer from S0 (MCU Write) to DT. If S0 Color is equal to the Chroma Key Color, which is defined in Background Color Register, destination BTE Window will not be changed, no ROP applied for this operation.

7.3.7 Memory Copy with Chroma Key

This Operation supports data transfer in positive direction only, and requires all source data and destination data located in Memory. If S0 Color is equal to Chroma Key color, which is defined in Background Color Register, destination BTE Window will not be changed, no ROP applied for this operation.

7.3.8 MCU Write with Color Expansion

This Operation performs Color Expansion for the S0 (the data from MCU), from Monochrome 1 bpp format to Color 8/16/24 bpp format. The source data_1b will expand to the color data defined in the Foreground Color Register. The source data_0b will expand to the color data defined in the Background Color Register. If background transparency is enabled, then the Color of destination BTE Window will remain no change.

Note: No matter background transparency is enabled or not, must set the Different Color data in Foreground Color Register (D2h~D4h) and Background Color Register (D5h~D7h).

7.3.9 Memory Copy with Color Expansion

This Operation performs Color Expansion for Source 0 data from Memory, please refer to 7.3.8 for other description and note.

7.3.10 Memory Copy with Opacity

This Operation performs Alpha Blending for S0 data and S1 data and transferring the result data to the destination BTE Window, it requires S0, S1, DT located in Memory. The Alpha Blending has 2 modes, Picture Mode: for all pixels, blending by a mutual Alpha the level data saved in the register. Pixel Mode: for each pixel, blending by individual Alpha Level of each pixel.

7.3.11 MCU Write with Opacity

This Operation performs Alpha Blending for S0 data and S1 data and transferring the result data to destination BTE Window, it requires S0 coming from MCU and S1/DT from Memory, please refer to 7.3.10 for the descriptions of 2 modes.

7.4 BTE Memory Access Method

🗸 LT7680

BTE accesses data of Sources and Destination by Block Method, and the size of the Data Block is defined by BTE Window. Below diagram shows how to define S0 / S1 / DT / BTE_Window, and shows the Directions of Memory Access:

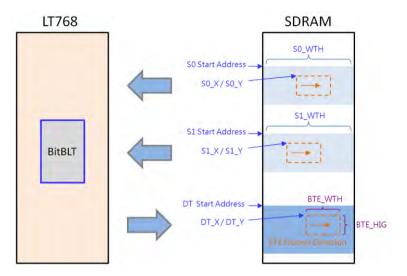


Figure 7-3: BTE Memory Access Method

7.5 BTE Chroma Key (Transparency Color) Function

If Chroma Key function enabled, BTE will take Background Color (defined in Background Color Register) as Chroma Key (Transparent Color), and compare the Chroma Key Data against the S0 Data one by one, if compare result is Equal then BTE will not overwrite DT, otherwise write S0 Data to DT.

Below shows the available bits of the Background Color Registers against different Color Depth:

Source Color Depth = 256

Compare S0 Red color vs. REG[D5h] bit [7:5],

Compare S0 Green color vs. REG [D6h] bit [7:5],

Compare S0 Blue color vs. REG [D7h] bit [7:6]

Source Color Depth = 65,536

Compare S0 Red color vs. REG[D5h] bit [7:3], Compare S0 Green color vs. REG [D6h] bit [7:2], Compare S0 Blue color vs. REG [D7h] bit [7:3]

Source Color Depth = 16,777,216

Compare S0 Red color vs. REG[D5h] bit [7:0], Compare S0 Green color vs. REG [D6h] bit [7:0], Compare S0 Blue color vs. REG [D7h] bit [7:0]

7.6 BTE Operation Detail

7.6.1 MCU Write with ROP

This Operation performs to transfer S0 (form MCU Write) to DT, and supports all 16 ROP functions. Below diagram is an example for the operation result while BTE Control Register 1 REG[91h] set as 0xC0h.

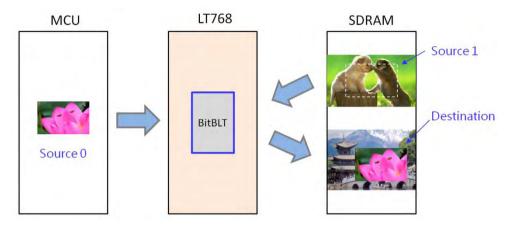


Figure 7-4: Example of MCU Write with ROP

The suggested programming steps and register settings are listed below as reference.

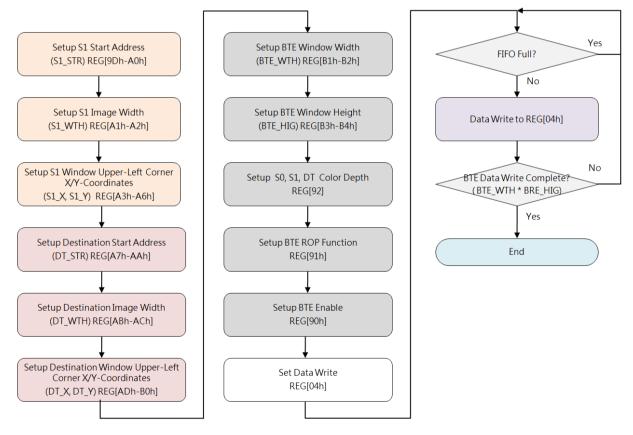


Figure 7-5: Flow Chart of MCU Wtite with ROP

7.6.2 Memory Copy (move) with ROP

This Operation performs Memory Copy from S0 (from Memory) to DT. Below diagram is an example for the operation result while BTE Control Register 1 REG[91h] set as 0xC2h.

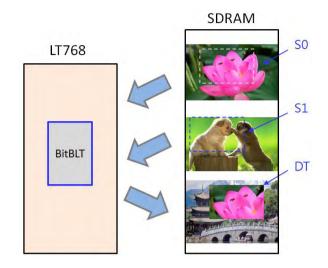
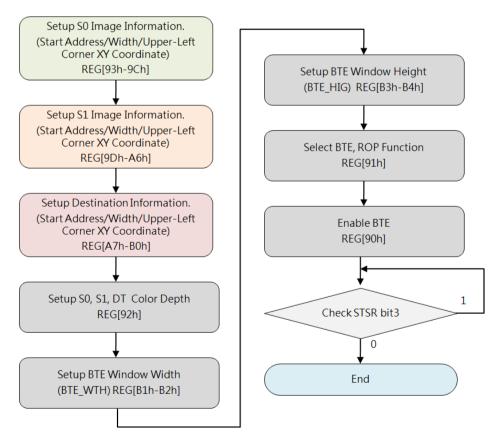
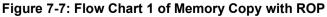




Figure 7-6: Example of Memory Copy with ROP

Figure 7-7 is Flow Chart by checking Status Register STSR bit3 to monitor BTE busy or not. Figure 7-8 is Flow Chart by responding Hardware Interruption to get BTE processing result.

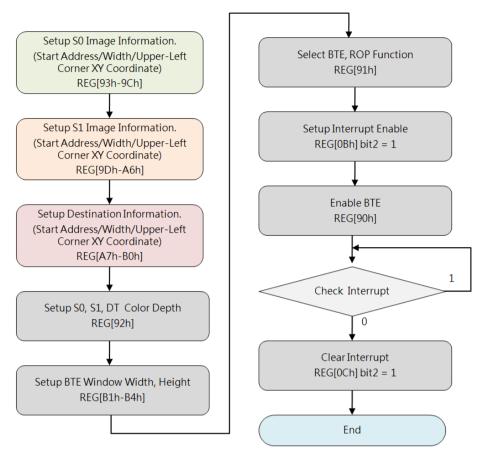


Figure 7-8: Flow Chart 2 of Memory Copy with ROP

LT7680

This Operation performs to transfer S0 (from MCU Write) to DT, and supports Chroma Key function (referring to 7.5).

If S0 Color Data is equal to the Chroma Key (the color Data defined in the Background Color Registers REG[D5h-D7h]), BTE will take that Color as Transparent, means BTE will discard writing that Color data to DT. Below Example shows GREEN is background color of RED "TOP", and GREEN is set as Chroma Key, BTE will write RED "TOP" only to DT:

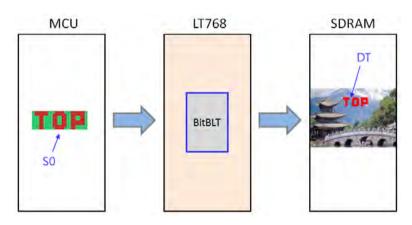


Figure 7-9: Example of MCU Write with Chroma Key

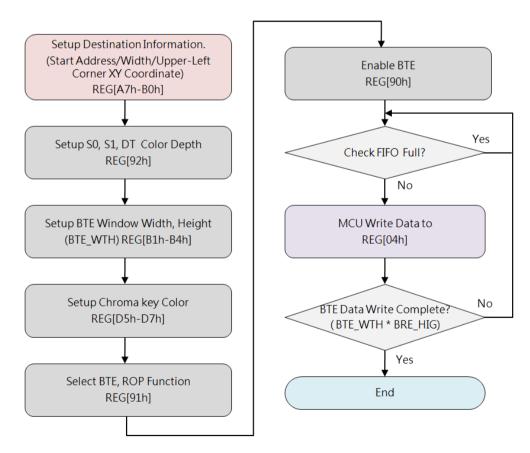


Figure 7-10: Flow Chart of MCU Write with Chroma Key

LT7680

This Operation performs Memory Copy from S0 (from Memory) to DT, and supports Chroma Key function (referring to Section 7.5).

The difference comparing with "MCU Write with Chroma Key" is that S0 comes from Memory but not MCU Write, please refer to Section 7.6.3 for more descriptions and Figure 7-11 for an example:

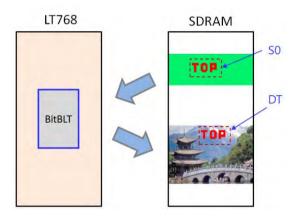


Figure 7-11: Example of Memory Copy with Chroma Key

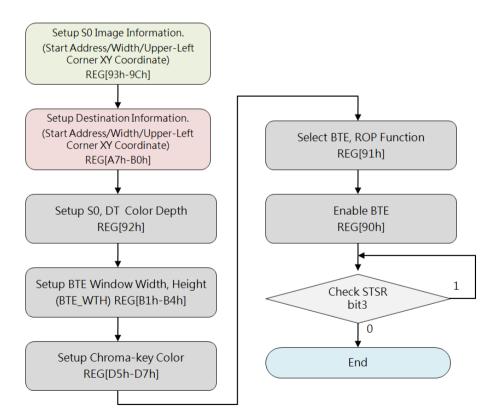


Figure 7-12: Flow Chart of Memory Copy with Chroma Key

7.6.5 Pattern Fill with ROP

LT7680

This Operation performs to fill a pattern (as S0) repeatedly to a specified Rectangular Area of Destination (also known as BTE Window). The pattern should be an array of 8x8 or 16x16 pixels stored in Memory. The pattern can be logically processed with S1 by using one of the 16 ROP functions. This Operation can be used to speed up duplicating a matrix of pattern into an area, such as background paste function.

Below example shows a six fills with 8x8 Pattern, ROP REG[91h] bit[7:4] set as 0x0C:

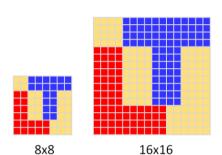


Figure 7-13: Pattern Format

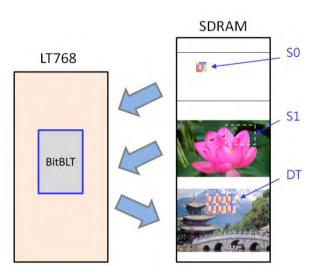
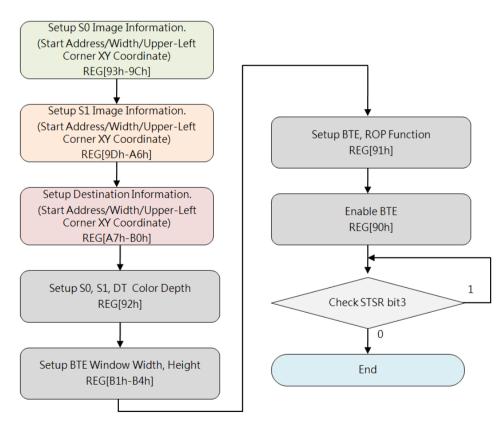
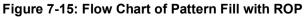




Figure 7-14: Example of Pattern Fill with ROP

7.6.6 Pattern Fill with Chroma Key

LT7680

This Operation performs to fill a pattern (as S0) repeatedly to a specified Rectangular Area of DT (also known as BTE Window), and supports Chroma Key function (referring to Section 7.5). If any partial Color Data of the pattern is equal to the Chroma Key data, BTE will discard that partial fillings.

Below Example shows ORANGE is background color of RED "T", and ORANGE is set as Chroma Key, BTE will fill RED "T" only to DT one by one:

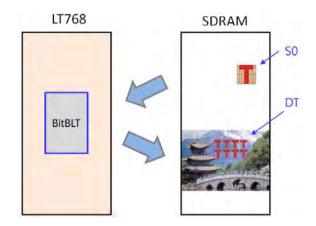


Figure 7-16: Example of Pattern Fill Chroma Key

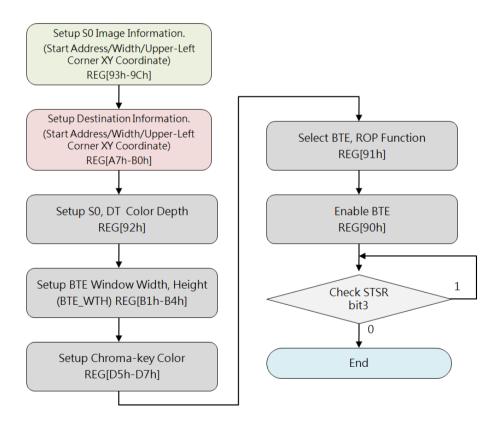
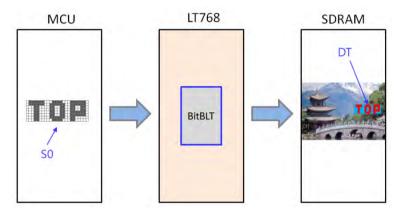
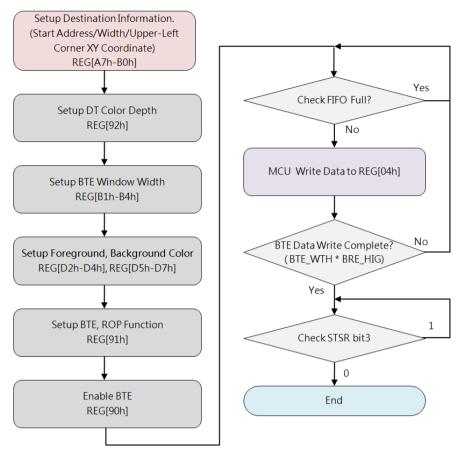


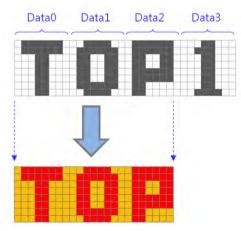
Figure 7-17: Flow Chart of Pattern Fill with Chroma Key

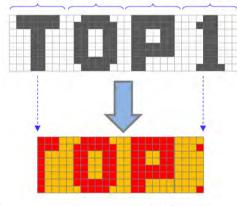
7.6.7 MCU Write with Color Expansion

This Operation performs Color Expansion for S0 (from MCU Write), it "s useful to translate bit-wise monochrome data to byte-wise color data. In this operation, S0 Color Depth REG[92h] Bit[6:5] is ignored, BTE takes MCU Interface Width as S0 Color Depth (Word Width), such as 8-bits MCU Interface the Color Depth is 8-bits and 16-bits MCU Interface the Color Depth is 16-bits. User should set needed Start Bit to REG[91h] Bit[7:4] against the corresponding Color Depth, so Bit[7]~Bit[0] are available for 8-bits depth and Bit[15]~Bit[0] are available for 16-bits depth. BTE disassembles Word by Word to Bit sequences (from LSB to MSB) against the ROW Line of source image (from left to right), and sequently expands bit by bit until the BTE Width reached ending. The result to DT is that data_1b expanded to Foreground Color and data_0b expanded to Background Color. Any Bit before the Start Bit and other Bits uncovered by the BTE Window will be discarded.

Below example shows expanding data_1b to RED (Foreground Color) and data_0b to BLUE (Background Color), so the result to DT is RED "TOP" together with BLUE background:


Figure 7-18: Example of MCU Write with Color Expansion



For 8-bits MCU Inerface, if Foreground Color set to RED, Background Color set to KHAKI, and BTE Width set to 23, more examples please refer to Figure 7-20 (ROP = 7) and Figure 7-21 (ROP = 3).

Data0

Data2

Data3

Data1

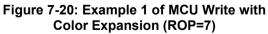


Figure 7-21: Example 2 of MCU Write with Color Expansion (ROP=3)

Note:

1. Sent Word_ Numbers_per_Row
= [BTE_Width + (MCU_Interface_bits - Start_bit - 1)] / (MCU_Interface_bits)
(T_locid to the set of the set o

(Take integer with unconditional carry)

2. Word_Number_Total = (Word_ Numbers_per_Row) * BTE Height

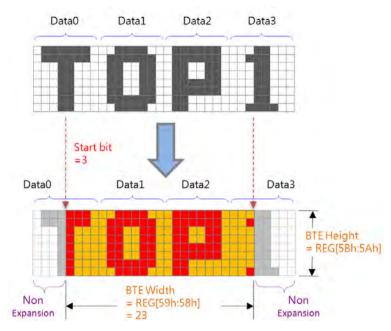


Figure 7-22: Data Format for Color Expansion

Example 1: "BTE Width"= 50, "MCU I/F bits" = 8 bits,

If Start bit=7, then: Sent Data Numbers per Row = [{ 50 + (8 - 7 - 1) } / 8] = 7 Bytes

If Start bit=4, then: Sent Data Numbers per Row = [{ 50 + (8 - 4 - 1) } / 8] = 7 Bytes

Example 2: "BTE Width"= 50, "MCU I/F bits" = 16 bits,

If Start bit =15, then: Sent Data Numbers per Row = $[{50 + (16 - 15 - 1)} / 16] = 4$ Bytes If Start bit=0, then: Sent Data Numbers per Row = $[{50 + (16 - 0 - 1)} / 16] = 5$ Bytes

LT7680

This Operation is similar with MCU Write with Color Expansion, but the difference is that data_0b will be discarded, BTE expands only data_1b to Foreground Color.

Below example shows expanding data_1b to RED (Foreground Color) and data_0b discarded, so the result to DT is RED "TOP" with TRANSPARENT background:

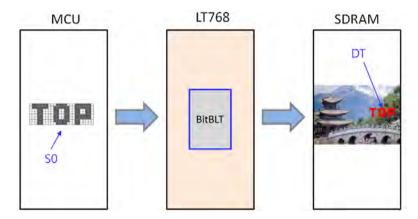


Figure 7-23: Example of MCU Write with Color Expansion and Chroma key

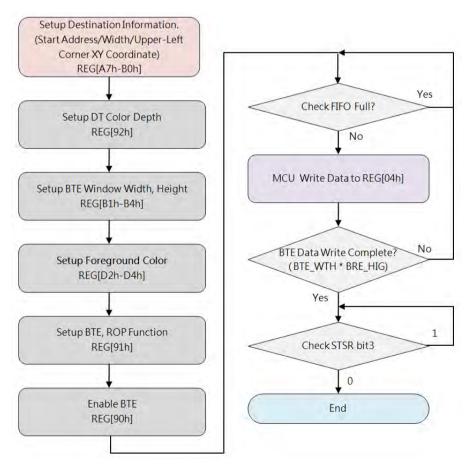


Figure 7-24: Flow Chart of MCU Write with Color Expansion and Chroma key

7.6.9 Memory Copy with Opacity

_T7680

This Operation performs blending S0 and S1 data and transferring the result to DT, two mode are available: Picture Mode and Pixel Mode.

Picture Mode is for 8 bpp/16bpp/24bpp format and using same one Opacity Value (Alpha Level) for whole bitmap picture. Opacity Value of Picture Mode is defined in REG[B5h].

Pixel Mode is for 8bpp/16bpp format and using individual Opacity Value of S1, each pixel of S1 has its own Opacity Value, such as: for one 16bpp data, the bit[15:12] is Opacity Value, the bit[11:0] is color data; for one 8bpp data of S1, the bit[7:6] is Opacity Value, the bit[5:0] is the Index (Address) of Palette Color RAM pointing to initialized 12-bits Color Depth data.

- Picture Mode: Alpha_Level = REG[B5h] DT Data = (S0 * Alpha_Level) + (S1 * (1- Alpha_Level))
- Pixel Mode 8bpp:

Alpha_Level = S1_Bit[7:6] DT Data = (S0 * Alpha_Level) + (Palette_Color_RAM[S1_Bit[5:0]] * (1 – Alpha_ Level))

Pixel Mode 16bpp: Alpha_Level = S1_Bit[15:12] DT Data = (S0 * Alpha Level) + (S1 Bit[11:0] * (1 – Alpha Level))

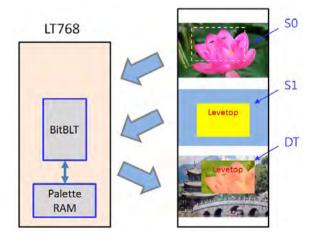
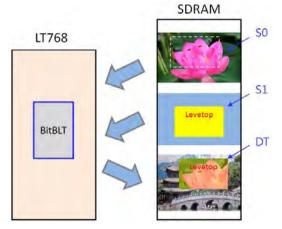
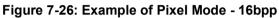




Figure 7-25: Example of Pixel Mode - 8bpp

Bit[7:6]	Alpha Level
0h	0
1h	10/32
2h	21/32
3h	1

Bit[15:12]	Alpha Level
Oh	0
1h	2/32
2h	4/32
3h	6/32
4h	8/32
5h	10/32
6h	12/32
7h	14/32
8h	16/32
9h	18/32
Ah	20/32
Bh	22/32
Ch	24/32
Dh	26/32
Eh	28/32
Fh	1

Table 7-5: Alpha Level of Pixel Mode - 16bpp

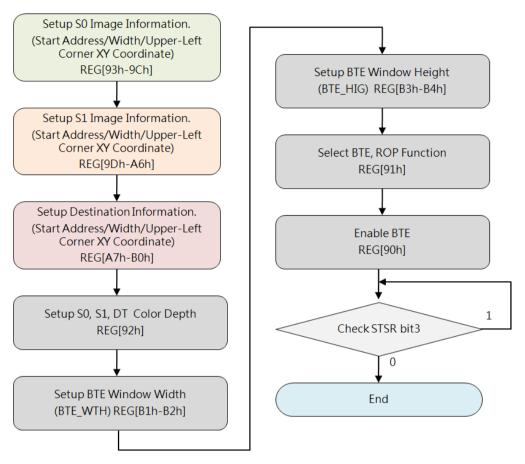


Figure 7-27: Flow Chart of Memory Copy with Opacity -Pixel Mode

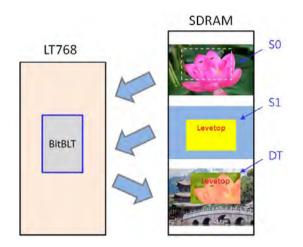


Figure 7-28: Example of Memory Copy with Opacity - Picture Mode

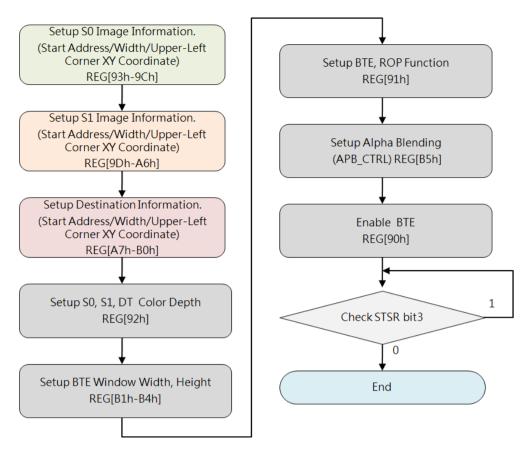


Figure 7-29: Flow Chart of Memory Copy with Opacity - Picture Mode

7.6.10 MCU Write with Opacity

🗸 LT7680

This Operation is similar with Memory Copy with Opacity, but the difference is that S0 is from MCU Write, and has same Picture Mode and Pixel Mode, for more descriptions please refer to Section 7.6.9.

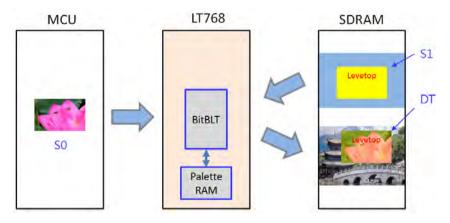


Figure 7-30: Example of MCU Write with Opacity

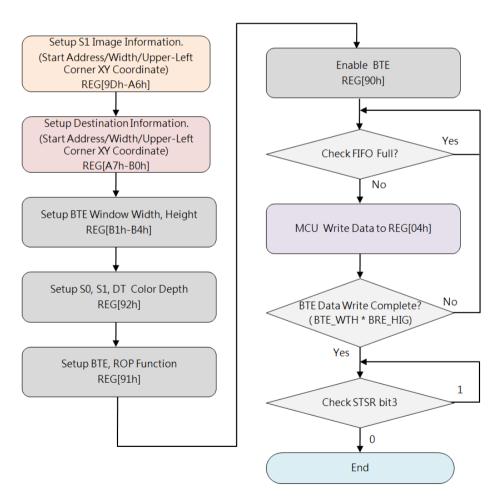


Figure 7-31: Flow Chart of MCU Write with Opacity

7.6.11 Memory Copy with Color Expansion

This Operation performs Color Expansion for the S0 data (from Memory), it "s useful to translate bit-wise monochrome data to byte-wise color data. In this operation, S0 data Color Depth (Word Width) is defined in REG[92h] Bit[6:5]. User should set needed Start Bit to REG[91h] Bit[7:4] against the corresponding Color Depth, Bit[7]~Bit[0] are available for 8-bits depth and Bit[15]~Bit[0] are available for 16-bits depth. BTE disassembles Word by Word to Bit sequences (from MSB to LSB) against the ROW Line of source image (from left to right), and sequently expands bit by bit until the BTE Width reached ending as well. The result to DT is that data_1b expanded to Foreground Color and data_0b expanded to Background Color. Any Bit before the Start Bit and other Bits uncovered by the BTE Window will be discarded.

Below example shows expanding data_1b to RED (Foreground Color) and data_0b to BLUE (Background Color), so the result to DT is RED "TOP" together with BLUE background:

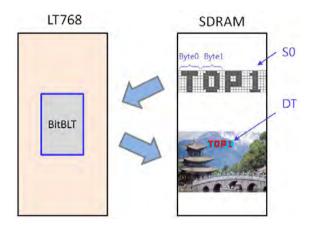


Figure 7-32: Example of Memory Copy with Color Expansion

While: S0 Color Depth = 8, Foreground Color = RED, Background Color = KHAKI, BTE window Width = 23, please refer to Figure 7-33 (ROP = 7) and Figure 7-34 (ROP = 4) as examples.

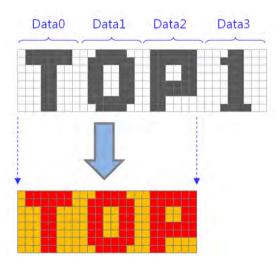


Figure 7-33: Example 1 of Memory Copy with Color Expansion (ROP=7)

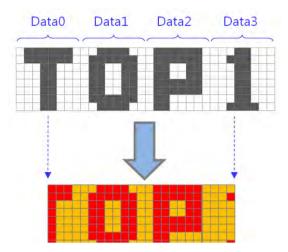


Figure 7-34: Example 2 of Memory Copy with Color Expansion (ROP=4)

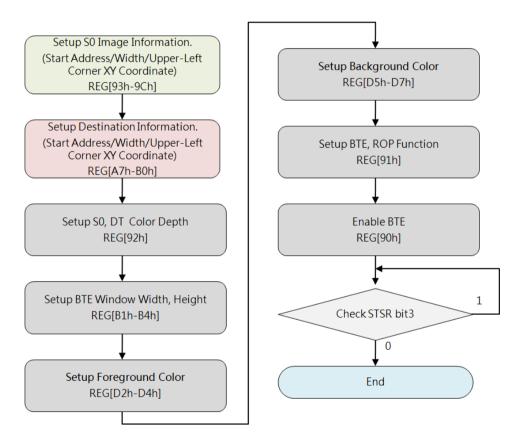


Figure 7-35: Flow Chart of Memory Copy with Color Expansion

7.6.12 Memory Copy with Color Expansion and Chroma Key

LT7680

This Operation is similar with Memory Copy with Color Expansion, but the difference is that data_0b will be discarded, BTE expands only data_1b to Foreground Color.

Below example shows expanding data_1b to RED (Foreground Color) and data_0b discarded, so the result to DT is RED "TOP" with TRANSPARENT background:

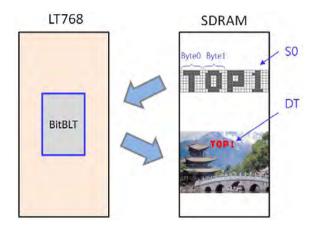


Figure 7-36: Example of Memory Copy with Color Expansion and Chroma Key

Figure 7-37: Flow Chart of Memory Copy with Color Expansion and Chroma Key

7.6.13 Solid Fill

7LT7680

This operation fills a specified Rectangle Area (BTE Window) of DT, with a Solid Color the data defined in the Foreground Color Register.

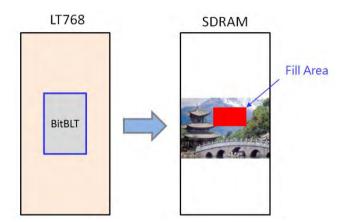


Figure 7-38: Example of Solid Fill

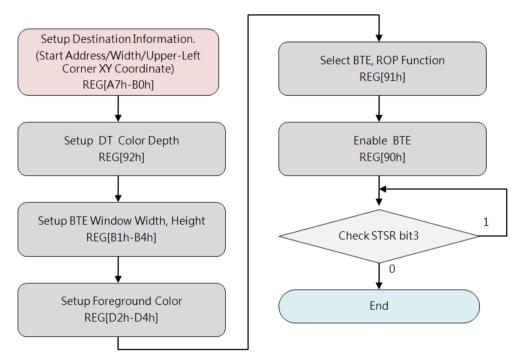


Figure 7-39: Flow Chart of Solid Fill

8. Display Text

LT7680 supports 2 sources of Text (Character and Symbols):

- CGROM(Character Graphic ROM): Embedded ISO/IEC 8859 Character Sets
- CGRAM(Character Graphic RAM): User-defined Character Sets (UCG sets)

LT7680 internal CGROM supports four sets of embedded Characters and Symbols of ASCII code, and internal CGRAM supports user to create own Characters and Symbols sets when needed. The registers REG[CCh] ~REG[DEh] are for purpose of User-defined Characters. The Foreground Color registers REG[D2h] ~REG[D4h] and the Background Color registers REG[D5h] ~ REG[D7h] are also employable to define Color for characters from any source.

8.1 Internal CGROM

LT7680 built in three ASCII font types with different resolutions (character sizes): 8 x 16, 12 x 24, 16 x 32. The MCU just simply writes the font code to easily make the ASCII word display on the LCD panel. The size of the ASCII characters displayed is set by REG[CCh] [5:4]. The ASCII code is corresponding to the standard ISO/IEC 8859-1/2/4/5 coding (table 8-1 to Table 8-4 below). What type of ISO/IEC 8859 font displayed on the TFT panel is setting by REG [CCh] [1:0]. In addition, the user can select the color of the text by setting the front-view register REG (D2h to D4h) and the background color register (REG (D5h~D7h). You can refer to the following program flowchart:

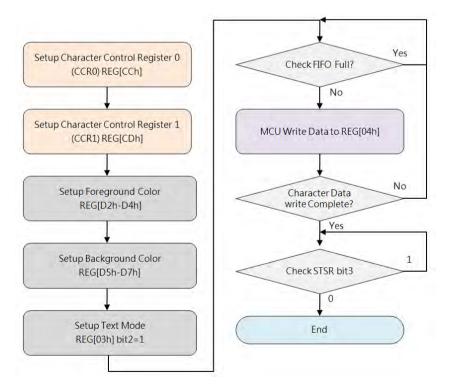


Figure 8-1A: Flow Chart of CGROM Basic Programming

Table 8-1 shows the standard character encoding of ISO/IEC 8859-1. ISO means International Standardization Organization. The ISO/IEC 8859-1, generally known as "Latin-1", it is the first sets of 8-bit coded character encoding developed by the ISO, and referred to ASCII that consisting of 192 characters from the Latin script in range 0xA0-0xFF. This character coding is used throughout Western Europe, including Albanian, Afrikaans, Breton, Danish, Faroese, Frisian, Galician, German, Greenlandic, Icelandic, Irish, Italian, Latin, Luxembourgish,

Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish, Swedish. English letters without accent marks also can use ISO/IEC 8859-1. In addition, it is also commonly used in many languages outside Europe, such as Swahili, Indonesian, Malaysian and Tagalong.

In the Table 8-1, character codes 0x80~0x9F are defined by Microsoft Windows, also called CP1252 (WinLatin1).

Table 8-1: ISO/IEC 8859-1

🗸 LT7680

2 3 4 5 6 7 8 9 A B C R DE 0 0 0 4 4 . 8 9 1 Ø 1 = 8 -+ + # \$ % & 1 ¥ + 3 12345678 9 0 = > < 4 ABC E F GH D K N 5 QRSTUVW Y 7 X 6 a b c d e f g h i k mno 7 parstuvwx U Z 8 9 A A Ł Ś Š Ž п Ľ 8 S В 1 Ś š ż a 1' S ť ź ž С Á Â Ă Ä É r F D C D Ð ŃŇ ÓÔ Ő Ö Ř Ů B X U á âă ä 1 é e ë ć C č d ě ńňóôőö÷řuúűü

Table 8-2: ISO/IEC 8859-2

Table 8-2 shows the standard characters of ISO/IEC 8859-2, also known as Latin-2, it is the second sets of the 8-bit character encoding developed by ISO. This code sets can be used in almost any data interchange system to communicate in the following European languages: Croatian, Czech, Hungarian, Polish, Slovak, Slovenian, and Upper Sorbian. The Serbian, English, German, Latin can use ISO/IEC 8859-2 as well. Furthermore it is suitable to represent some western European languages like Finnish (with the exception of a used in Swedish and Finnish)

Table 8-3 shows the standard characters of ISO/IEC 8859-4, also known as Latin-4 or "North European", it is the fourth sets of the ISO/IEC 8859 8-bit character encoding. It was designed originally to cover Estonian, Greenlandic, Latvian, Lithuanian, and Sami. This character set also supports Danish, English, Finnish, German, Latin, Norwegian, Slovenian, and Swedish.

ł	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0		0	۲	۲	٠	÷	٠	•	ŧ	0	0	\$	q	1	1	¢
1	•	•	\$		1	8	-	\$	Î	↓	+	+	L	⇔		V
2		ļ		#	\$	%	&	1	()	¥	+	,	-		1
3	0	1	2	3	4	5	6	7	8	9		;	<	=	>	?
4	0	A	В	С	D	E	F	G	H	Ι	J	K	L	M	N	0
5	Ρ	Q	R	S	T	U	V	W	Х	Y	Ζ]	1]	^	_
6	`	а	b	С	d	е	f	g	h	i	j	k	l	m	n	0
7	р	q	r	S	t	U	V	W	X	у	Z	{	1	}	2	8
8							1									
9															-	
A		Ą	К	Ŗ	П	Ĩ	Ļ	8		Š	Ē	Ģ	Ŧ	1	Ž	1
В	0	ą		ŗ	1	ĩ	1	v	2	š	ē	ģ	ŧ	D	ž	ŋ
С	Ā	Á	Â	Ã	Ä	Å	Æ	Į	Č	É	Ę	10.00	Ė	Í	Î	Ī
D	Ð	Ņ	Ō	Ķ	Ô	Õ	Ö	×	0	Ų	Ú	Û	Ü	Ũ	Ū	В
E	ā	á	â	ã	ä	å	æ	į	č	é	ę	ë	ė	í	î	ī
F	đ	ņ	Ō	ķ	ô	Õ	ö	÷	Ø	ų	ú	û	ü	Ũ	ū	ľ

Table 8-3: ISO/IEC 8859-4

Table 8-4: ISO/IEC 8859-5

ł	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Ε	F
0		0	۲	۲	٠	÷	٠	•	ŧ	0	0	\$	ę	1	1	٥
1	•	•	\$!!	1	8		¢	Î	↓	+	÷	F	↔	4	V
2		ļ	jî.	#	\$	%	&	1	()	¥	+	,	-		1
3	0	1	2	3	4	5	6	7	8	9	1	;	<	=	>	?
4	٥	A	В	С	D	E	F	G	Η	Ι	J	K	L	M	N	0
5	Ρ	Q	R	S	T	U	V	W	Х	Y	Ζ	[1]	^	_
6		а	Ь	С	d	е	f	g	h	i	j	k	1	m	n	0
7	р	p	r	S	t	u	٧	W	X	у	Z	{		}	2	11
8	T		1				1									
9												2			10	
A		Ë	Б	ŕ	3	S	Ι	Ï	J	ŀ	Hb	ħ	Ŕ	-	ÿ	Ų
В	A	Б	В	Г	Д	Ε	Ж	3	И	Й	К	Л	М	H	0	Π
С	Ρ	С	T	у	Ф	χ	Ц	Ч		Щ	Ь	Ы	b	Э	Ю	Я
D	а	б	В	Г	Д	е	Ж	3	N	Й	K	Л	М	H	0	П
E	р	С	Т	у	ф	χ	Ц	Ч	Ш	Щ	b	bl	b	З	Ю	Я
F	N₽	ë	ħ	ŕ	6	s	i	ï	j	Jb	Hb	ħ	Ŕ	§	ў	Ų

Table 8-4 shows the standard characters of ISO/IEC 8859-5. also known as the fifth sets of the ISO/IEC 8859 8-bit character encoding. It was designed originally to cover Bulgarian ,Belarusian, Russian, Serbian and Macedonian.

Figure 8-1B: Internal ASCII Font for 8*16, 12*24 and 16*32

8.2 User-defined Character Graphic (UCG)

User can create and utilize UCG when needed. LT7680 supports Half Width size (8x16, 12x24, 16x32 dot-matrix graphic) and Full Width size (16x16, 24x24, 32x32 dot-matrix graphic), and supports up to 32,768 UCGs with half width by encoding from 0000h up to 7FFFh, and up to 32,768 UCGs with full width by encoding from 8000h up to FFFFh.

To display someone UCG, just need MCU to write corresponding CODE of the UCG to LT7680, LT7680 can resolve the CODE (relative ADDRESS of CGRAM) to corresponding absolute ADDRESS of Memory where the UCG data is really saved, then transfer the graphic data to display Memory Buffer. Of course, user can define Foreground Color by setting the REG[D2h] ~REG[D4h] and Background Color by setting the REG[D5h]~REG[D7h] in advance.

To create UCG and Initialize CGRAM, need to format data of dot-matrix graphic and allocate Memory Space at first, please refer to below sections.

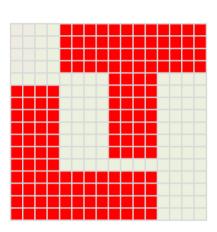
8.2.1 8*16 UCG Data Format

UCG with 8*16 size needs 16 bytes data. For example, CGRAM start address is 1000h and the first UCG encoding is 0000h, the data will be saved in 1000h~100Fh, then the second UCG encoding will be 0001h and its data will be saved in 1010h~101Fh. Below formula and table show the way to calculate 8*16 UCG Address in Memory, data Format and data byte Sequence:

UCG_ADD = CGRAM_Start_ADD + (UCG_Code * 16)

UCG Cod	le: 0000h	UCG Code: 0001h			
Address	Data	Address	Data		
1000h	Byte0: <mark>3Fh</mark>	1010h	Byte0		
1001h	Byte1: 3Fh	1011h	Byte1		
1002h	Byte2: 0Ch	1012h	Byte2		
1003h	Byte3: <mark>0Ch</mark>	1013h	Byte3		
:	:	:	:		
:	:	:	:		
:	:	:	:		
100Dh	Byte14: C0h	101Dh	Byte14		
100Eh	Byte14: FFh	101Eh	Byte14		
100Fh	Byte15: FFh	101Fh	Byte15		

Table 8-5: Data Format and Byte Sequenc of 8*16 UCG

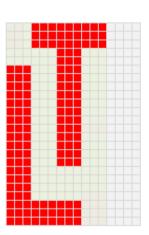

8.2.2 16*16 UCG Data Format

UCG with 16*16 size needs 32 bytes data. For example, CGRAM start address is 1000h and the first UCG encoding is 0000h, the data will be saved in 1000h~101Fh, then the second UCG encoding will be 0001h and its data will be saved in 1020h~103Fh. Below formula and table show the way to calculate 16*16 UCG Address in Memory, data Format and data byte Sequence:

UCG_ADD = CGRAM_Start_ADD + (UCG_Code * 32)

	UCG Code: 0000h								
Address	Data	Address	Data						
1000h	Byte0: <mark>0Fh</mark>	1001h	Byte1: FFh						
1002h	Byte2: 0Fh	1003h	Byte3: FFh						
1004h	Byte4: <mark>0Fh</mark>	1005h	Byte5: FFh						
1006h	Byte6: <mark>0Fh</mark>	1007h	Byte7: FFh						
:	:	:	:						
:	:	:	:						
:	:	:	:						
101Ah	Byte26: FFh	101Bh	Byte27: F0h						
101Ch	Byte28: FFh	101Dh	Byte29: F0h						
101Eh	Byte30: FFh	101Fh	Byte31: F0h						

Table 8-6: Data Format and Byte Sequenc of 16*16 UCG


8.2.3 12*24 UCG Data Format

UCG with 12*24 size needs 48 bytes data, note that bit[3:0] of the byte with Odd Sequence Number is ignored. For example, CGRAM start address is 1000h and the first UCG encoding is 0000h, the data will be saved in 1000h~102Fh, then the second UCG encoding will be 0001h and its data will be saved in 1030h~105Fh. Below formula and table show the way to calculate 12*24 UCG Address in Memory, data Format and data byte Sequence:

UCG_ADD = CGRAM_Start_ADD + (UCG_Code * 48)

	UCG Code: 0000h								
Address	Address Data		Data						
1000h	Byte0: 1Fh	1001h	Byte1: F0h						
1002h	Byte2: 1Fh	1003h	Byte3: F0h						
1004h	Byte4: 1Fh	1005h	Byte5: F0h						
1006h	Byte6: <mark>03h</mark>	1007h	Byte7: <mark>80h</mark>						
:	:	:	:						
:	:	:	:						
:	:	:	:						
102Ah	Byte42: FFh	102Bh	Byte43: 80h						
102Ch	Byte44: FFh	102Dh	Byte45: 80h						
102Eh	Byte46: FFh	102Fh	Byte47: <mark>80h</mark>						

Table 8-7: Data Format and Byte Sequenc of 12*24 UCG

8.2.4 24*24 UCG Data Format

7LT7680

UCG with 24*24 size needs 72 bytes data. For example, CGRAM start address is 1000h and the first UCG encoding is 0000h, the data will be saved in 1000h~1047h, then the second UCG encoding will be 0001h and its data will be saved in 1048h~108Fh. Below formula and table show the way to calculate 24*24 UCG Address in Memory, data Format and data byte Sequence:

UCG_ADD = CGRAM_Start_ADD + (UCG_Code * 72)

	UCG Code: 0000h									
Address	Data	Address	Data	Address	Data					
1000h	Byte0	1001h	Byte1	1002h	Byte2					
1003h	Byte3	1004h	Byte4	1005h	Byte5					
1006h	Byte6	1007h	Byte7	1008h	Byte8					
1009h	Byte9	100Ah	Byte10	100Bh	Byte11					
:	:	:	:	:	:					
:	:	:	:	:	:					
:	:	:	:	:	:					
103Fh	Byte63	1040h	Byte64	1041h	Byte65					
1042h	Byte66	1043h	Byte67	1044h	Byte68					
1045h	Byte69	1046h	Byte70	1047h	Byte71					

Table 8-8: Data Format and Byte Sequenc of 24*24 UCG

8.2.5 16*32 UCG Data Format

7LT7680

UCG with 16*32 size needs 64 bytes data. For example, CGRAM start address is 1000h and the first UCG encoding is 0000h, the data will be saved in 1000h~103Fh, then the second UCG encoding will be 0001h and its data will be saved in 1040h~107Fh. Below formula and table show the way to calculate 16*32 UCG Address in Memory, data Format and data byte Sequence:

UCG_ADD = CGRAM_Start_ADD + (UCG_Code * 64)

	UCG Code: 0000h							
Address	Data	Address	Data					
1000h	Byte0	1001h	Byte1					
1002h	Byte2	1003h	Byte3					
1004h	Byte4	1005h	Byte5					
1006h	Byte6	1007h	Byte7					
:		:	:					
:	:	:	:					
103Ah	Byte58	103Bh	Byte59					
103Ch	103Ch Byte60		Byte61					
103Eh Byte62		103Fh	Byte63					

Table 8-9: Data Format and Byte Sequenc of UGC

8.2.6 32*32 UCG Data Format

UCG with 32*32 size needs 128 bytes data. For example, CGRAM start address is 1000h and the first UCG encoding is 0000h, the data will be saved in 1000h~107Fh, then the second UCG encoding will be 0001h and its data will be saved in 1080h~10FFh. Below formula and table show the way to calculate 32*32 UCG Address in Memory, data Format and data byte Sequence:

UCG_ADD = CGRAM_Start_ADD + (UCG_Code * 128)

	UCG Code: 0000h									
Address	Data	Address	Data	Address	Data	Address	Data			
1000h	Byte0	1001h	Byte1	1002h	Byte2	1003h	Byte3			
1004h	Byte4	1005h	Byte5	1006h	Byte6	1007h	Byte7			
1008h	Byte8	1009h	Byte9	100Ah	Byte10	100Bh	Byte11			
100Ch	Byte12	100Dh	Byte13	100Eh	Byte14	100Fh	Byte15			
:	:	:	:	:	:	:	:			
:	:	:	:	:	:	:	:			
:	:	:	:	:	:	:	:			
1074h	Byte116	1075h	Byte117	1076h	Byte118	1077h	Byte119			
1078h	Byte120	1079h	Byte121	107Ah	Byte122	107Bh	Byte123			
107Ch	Byte124	107Dh	Byte125	107Eh	Byte126	107Fh	Byte127			

Table 8-10: Data Format and Byte Sequenc of 32*32 UCG

8.2.7 Initialize CGRAM from MCU

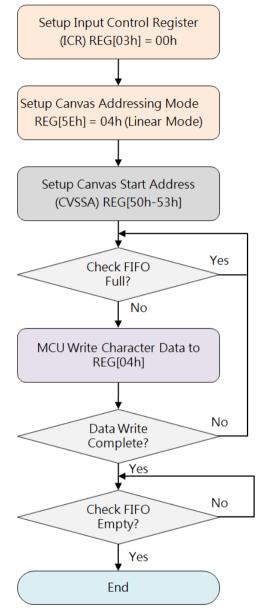


Figure 8-2: Flow Chart of CGRAM Initialization from MCU

8.2.8 Initialize CGRAM from Serial Flash

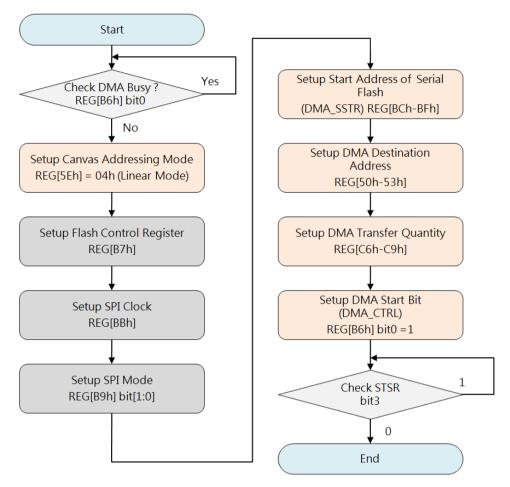


Figure 8-3: Flow Chart of CGRAM Initialization from Serial Flash

8.3 Character Rotation by 90 Degree

LT7680 supports to rotate character display by counterclockwise 90 degree. Normal (REG[CDh] bit4=0) text direction is from left to right then from top to bottom. If set REG[CDh] bit4=1, the character will rotate counterclockwise 90 degree and flip in vertical, as well as text direction will change to from top to bottom then from left to right. But to see correct display result, need to further change Display Scan Direction (set VDIR REG[12h] bit3=1, but please note that Text Cursor and Graphic Cursor as well as PIP are disabled automatically under this setting). Below is an example of Character Rotation by 90 degree:

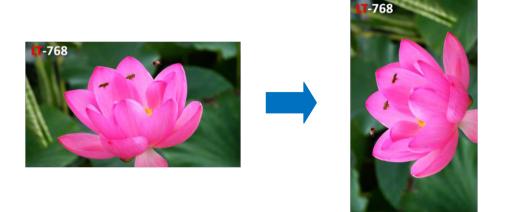


Figure 8-4: Example of Character Rotation

8.4 Size Enlargement

LT7680 supports linear *1, *2, *3, *4 character size enlargement for Height and/or Width, controlled by REG[CDh] bit[3:0].

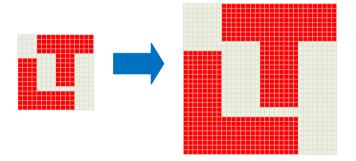


Figure 8-5: Example of Size Enlargement

8.5 Background Transparency

LT7680 supports character Background transparent, controlled by REG[CDh] bit6.

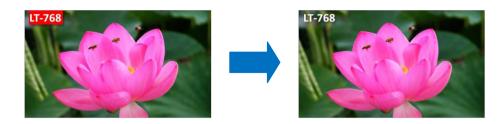
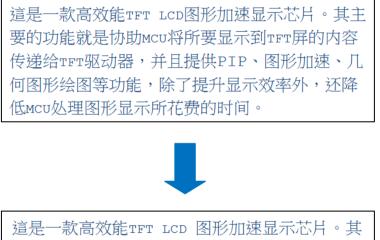



Figure 8-6: Example of Background Transparency

8.6 Character Full-Alignment

LT7680 supports character full-alignment that makes the character to align each other when input and display Half or Full size characters, set REG[CDh] bit7=1.

主要的功能就是协助MCU 将所要显示到TFT 屏的 内容传递给TFT 驱动器,并且提供PIP 、图形加 速、几何图形绘图等功能,除了提升显示效率外 ,还降低MCU 处理图形显示所花费的时间。

Figure 8-7: Example of Character Full-Alignment

8.7 Automatic Line Feed

LT7680 supports sequent text input and display, and can perform automatically Line Feed at active window boundary.

Figure 8-8: Example of Automatic Line Feed

8.8 Cursor

LT7680 supports 2 types of Cursor, Graphic Cursor and Text Cursor. The Graphic Cursor is 32*32 pixel graphic with 2-bits color index which can be displayed at an user-defined position. The Text Cursor is bit-wise graphic with 32*32 as maximum size, to point text input position. Note that when Vertical Scan Direction set to "From bottom to Top" (VDIR REG[12h] bit=1), Text Cursor and Graphic Cursor as well as PIP will be disabled automatically.

8.8.1 Text Cursor

Text Cursor has Auto-move, Blinking, and Enlargement functions, once enabled the Text Cursor appears in waiting input position, and can automatically move to next input position after current input competed. Auto-move also supports Auto Line Feed, but is dominated by Active Window, so Text Cursor must be positioned in active window and in Text Mode, moving distance and direction is same with Character input settings.

Register Address	Register Name	Description
REG[03h]	ICR	bit2: Graphic/Text Mode Selection (Text Mode Enable)
REG[3Ch]	GTCCR	bit1: Text Cursor Enable
		bit0: Text Cursor Blinking Enable)
REG[64h:63h]	F_CURX	X_Position: Text Input X coordinate
REG[66h:65h]	F_CURY	Y_Position: Text Input X coordinate
REG[D0h]	FLDR	Text Line Gap Setting

Table 8-11: Regiaters Related with Text Cursor

Text Cursor Blinking

By GTCCR (REG[3Ch]) to set Blinking enabled (bit[0]=1) or disabled (bit[0]=0), use below formula to calculate blinking interval:

Blink_Time (sec) = BTCR[3Dh] * (1/Frame_Rate)

Figure 8-9: Example of Text Cursor Blinking

Text Cursor Height and Width

Text Cursor Height and Width are controlled by CURHS ($\mathsf{REG[3Eh]}$) and CURVS ($\mathsf{REG[3Fh]}$).

If Character enlargement is enabled, Text Cursor enlargement is also enabled automatically according same enlargement settings.

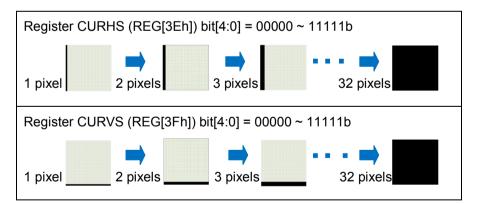


Figure 8-10: Example of Text Cursor Height and Width Settings

8.8.2 Graphic Cursor

LT7680

LT7680 Graphic Cursor is 32*32 pixel graphic with 2-bits Color Index, display color data is redirected to register GCC0(REG[44h]), GCC1(REG[45h]), Background Color, Inversed Background color:

2'b00	Color-0 (defined by REG[44h])	
2'b01	Color-1 (defined by REG[45h])	
2'b10 Background Color		
2'b11	Inversed Background Color	

To create a Graphic Cursor needs 256 bytes (32x32x2/8), Figure 8-11 shows the data format and byte sequence. LT7680 supports 4 sets of graphic cursor for selection (GTCCR REG[3Ch] bit[3:2]). Display position of graphic cursor is controlled by register GCHP0 (REG[40h]), GCHP1(REG[41h]), GCVP0(REG[42h]) and GCVP1(REG[43h]).

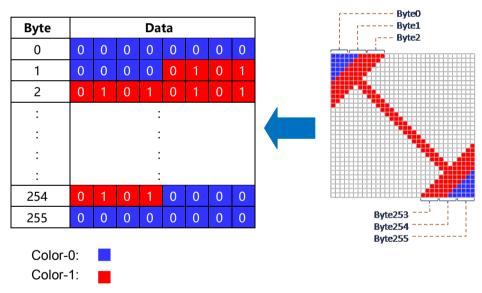


Figure 8-11: Graphic Cursor Data Format and Example

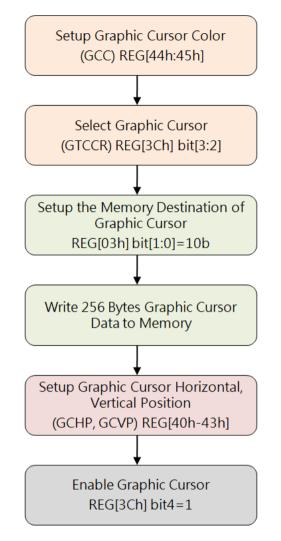


Figure 8-12: Flow Chart of Graphic Cursor Creation

9. Pulse Width Modulation (PWM)

LT7680 built-in PWM function, and provide two PWM signals output: PWM0 and PWM1. The LT7680 embedded two 16bits counters Timer-0 and Timer-1, and its action is related to the output state of the PWM signals. For example, before use the PWM0, the Host must set Timer-0 count registers (TCNTB0, REG[8Ah-8Bh],) and Timer-0 count comparison registers (TCMPB0, REG[88h-89h]). After the PWM function is enabled, the Timer-0 counter will first load the TCNTB0 value and start counting down according to the PWM clock frequency. When the value of the Timer-0 counter equals the value of the TCMPB0 register, PWM will active. That's mean if the original state of PWM0 is 0, it will change to 1. The Timer-0 counter will continue to count down, and when Timer-0 equals to 0 then an interrupt will generated. The PWM0's state will back to the original 0, and also automatically reload TCNTB0 value. The above procedure is represent a complete PWM cycle.

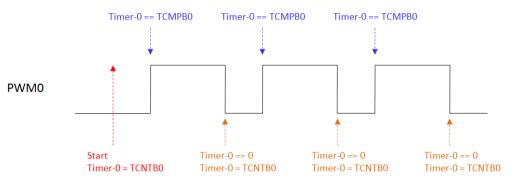


Figure 9-1: PWM0 Output Wave Form

Base on the above waveform and description, actually the duty cycle of PWM0 is determined by comparison registers (TCMPB0, REG[88h-89h]). For example, you want to generate a voltage of approximate DC potential by PWM0. When the PWM0 is initially set to 0, if TCMPB0 value is set to be large then we can get higher equivalent voltage on PWM0. Conversely, when the PWM0 is initially set to 1, then TCMPB0 value has to set smaller for getting higher equivalent voltage on PWM0.

Note: The automatic reload feature of PWM0 (REG[86h] bit1) must be turned on, and when Timer-0 equals 0 it will reload the value of the TCNTB0 automatically. Therefore, if the MCU changes TCNTB0 or TCMPB0 value before Timer-0 equals 0, PWM can produce different duty-cycle waveform.

9.1 PWM Clock Source

The PWM's clock source comes from CCLK(System Clock), while the Timer-0 and Timer-1 base frequencies are determined by register PSCLR (REG[84h]):

PWM_CLK = CCLK / (Prescaler + 1)

The clock source of Timer is determined by the respective frequency registers (REG[85h]). The Timer Divisor provides four options: 1, 1/2, 1/4, 1/8 for the Timer's clock. For example the REG[85h] Bit[5:4] = 10b, then the Timer-0 count Clock = System_clock/4. Please refer to the Register Description of next chapter for REG[84H] and REG[85h].

9.2 **PWM** Output

The output of PWM can also be set to a fixed high or low level. For PWM0, first to turn off the automatic overload feature (REG[86h] bit1 = 0), and stop Timer-0 count (REG[86h] bit0 = 0), if Timer-0 < TCMP0, then PWM output high. If Timer-0 > TCMP0, then PWM output low (assuming the reverse phase is closed, REG[86h] bit2=0). The output state of the PWM0 can be set to the inverse phase by REG[86h] bit2.

In addition, PWM0 and PWM1 are shared output pins that can be used for other purposes, please refer to the following description of Register REG[85h] bit[3:0].

Bit	Description
	PWM[1] Function Control
	0xb: PWM[1] output system error flag (Scan FIFO POP error or Memory access out of range)
3-2	10b: PWM[1] output PWM timer 1 event or invert of PWM timer 0
	11b: PWM[1] output Oscillator Clock
	PWM[0] Function Control
1.0	0xb: PWM[0] becomes GPIOC[7]
1-0	10b: PWM[0] output PWM Timer 0
	11b: PWM[0] output Core Clock (CCLK)

Table 9-1: REG[85h] Description

PWM0 and PWM1 can also be set to complementary outputs. In this case, the output state of PWM1 is followed by the setting and control of PWM0, except that it is a PWM0 reverse output state:

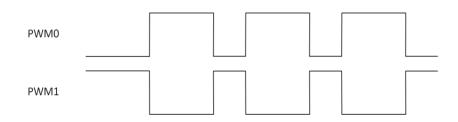


Figure 9-2: The Complementary Outputs of PWM0 and PWM1

In some applications of using Complementary Outputs of PWM0 and PWM1, PWM0 and PWM1 change state at the same time will cause excessive current. The LT7680 provides a dead-zone timing control to stagger the output state of PWM0 and PWM1 transfer at same time. The dead-zone length of PWM is set by register REG[87h] (DZ_LENGTH):

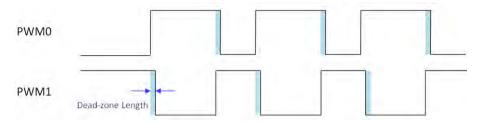


Figure 9-3: Dead-zone of PWM0 and PWM1

10. Serial Bus Master

10.1 Power-on Display

LT7680's Power-on Display circuit embedded a small microprocessor unit. The main function is to quickly display the screen at boot time by executing the program code stored in flash memory in the absence of Host, or when the Host is still in its start-up phase. To use this function must be in PWM[0] pin to connect a 10K pull-up resistor, then the "Power-On Display" function will be enabled(Refer to Figure10-1). In this case where the function is enabled, the LT7680 is automatically executed program code until the program code in the Flash memory is fully executed. That is, executing to the exit or undefined instruction, and then the control right will be transferred to the Host.

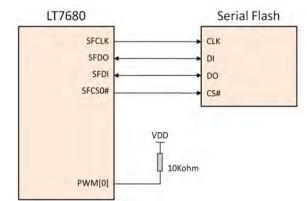


Figure 10-1: Enable the "Power-On Display" Function

The power-on display feature restricts program code and display data must exist in the same Flash memory. The Power-on Display unit supports 12 instructions as follows:

No.	Instruction	Description	instruction Length (Byte)
1	EXIT	Exit instruction (00h/FFh)	1
2	NOP	NOP instruction (AAh)	1
3	EN4B	Enter 4-Byte mode instruction (B7h)	1
4	EX4B	Exit 4-Byte mode instruction (E9h)	1
5	STSR	Status read instruction (10h)	2
6	CMDW	Command write instruction (11h)	2
7	DATR	Data read instruction (12h)	2
8	DATW	Data write instruction (13h)	2
9	REPT	Load repeat counter instruction (20h)	2
10	ATTR	Fetch Attribute instruction (30h)	2
11	JUMP	Jump instruction (80h)	5
12	DJNZ	Decrement & Jump instruction (81h)	5

Table 10-1: 12 Power-on Display Instructions

One Byte Instruction:

Exit instruction (EXIT) – 00h | FFh | Undefined instructions

EXIT instruction is executed to exit the Power-on Display function, and return control right to Host..

■ NOP instruction (NOP) – AAh

It will do nothing and then fetch next instruction.

■ Enter 4-Byte mode instruction (EN4B) – B7h

This instruction enables accessing the address length of 32-bit for the memory area of higher density (larger than 128Mb). The control unit default is in 24-bit address mode; after sending out the EN4B instruction, the address length becomes 32-bits instead of the default 24-bits. There are three methods to exit the 4-bytes mode: writing Exit 4-bytes Mode (EX4B) instruction, Hardware Reset or Power-off.

■ Exit 4-Byte mode instruction (EX4B) – E9h

The EX4B instruction is executed to exit the 4-bytes address mode and return to the default 3-bytes address mode. Once exiting the 4-bytes address mode, the address length will return to 24-bits.

Two Bytes Instruction:

■ Load repeat counter instruction (REPT) – 20h + param[0]

This instruction contains one byte parameter. This parameter stands for repeat counter value & used by DJNZ instruction.

Fetch attribute instruction (ATTR) – 30h + param[0]

This instruction contains one byte parameter. This instruction use to configure controller how to read serial flash data when under fetch instruction period. In Param[0]:

_bit [3:0] is clock divisor for SPI clock. Controller according to system clock set high period or low period for SPI clock. Default is 0.

Fsck = Fcore / [(Divisor + 1) * 2]

_bit [4] is device mode selection for [CPOL, CPHA]. Value "0" is mode 0, value "1" is mode 3. Default is 1 for mode 3.

_bit [5] is to define SFCS[1:0] deselect time or calls chip select high time (tCSH). Value "0"is 4 core clocks; value "1" is 8 clocks. Default is 8 core clocks.

_bit [7:6] is dummy cycle number. These two bits set 4 kinds of dummy cycle. The Value 0, 1, 2 or 3 stands for 0, 8, 16 or 24 dummy cycles. Default is 0. If dummy cycle number is 0 then serial flash read command code is 03h, otherwise serial flash read command code is 0Bh.

Status read instruction (STSR) – 10h + param[0]

The parameter stands for expected value in Status read **instruction**. If returned data is not match with expected value, this read instruction will repeat execution.

Command write instruction (CMDW) – 11h + param[0]

The parameter stands for write value for Command write instruction.

Data read instruction (DATR) – 12h + param[0]

The parameter stands for expected value in Data read instruction. If returned data is not match with expected value, this read instruction will repeat execution.

■ Data write instruction (DATW) – 13h + param[0]

The parameter stands for write value for Data write instruction.

Five Bytes Instruction:

■ Jump instruction (JUMP) – 80h + param[3] + param[2] + param[1] + param[0]

It contains 4-bytes parameters. Parameter 3~0 are serial flash"s 28-bits address information. i.e. param[3] is address[27:24], param[2] is address[23:16], param[1] is address[15:8] and param[0] is address[7:0]. After execution, next instruction will fetch from this specified address.

Decrement & Jump while not equal to zero (DJNZ) instruction – 81h + param[3] + param[2] + param[1] + param[0]

Parameter 3~0 are serial flash"s 28-bits address information. i.e. param[3] is address[27:24], param[2] is address[23:16], param[1] is address[15:8] and param[0] is address[7:0]. If repeat counter equal zero then next instruction will fetch from "current instruction address + 5", otherwise repeat counter will decrement one and jump to specified address.

After the Power-on Reset, the Power-on Display function is searched for two SPI interfaces provided by LT7680. The first 8 bytes must be "61h, 72h, 77h, 63h, 77h, 62h, 78h, 67h". If the flash memory is identified then the subsequent processing address will be (0008h), otherwise the master control will be transferred to the Host. LT7680 internal microprocessor from the flash memory of the address 0008h start to execute instructions, if the encounter with the exit or undefined instructions will control the Host. Here is an example of a display using an external serial Flash and show a 1024*768 picture on an 1024*768 resolution TFT panel:

// Ad	ldr: 'l	h000	0										
61	72	77	63	77	62	78	67		// ID				
11 11 11 11 11 11 11 11	05 06 07 08 09 0A 00 01 01 02	13 13 13 13 13 13 13 13 13 12 13	8A 41 8A 64 8A 64 80 82 82 40 40	Ą	// F F F // F F F // F F F F // F	REG_ REG_ REG_ REG_ REG_ REG_ REG_ REG_	_WR(_WR(_WR(_WR(_WR(_WR(_WR('h06 'h07 'h08 'h09 'h04 'h00 'h01	, 'h8A), , 'h41) , 'h8A) , 'h8A) , 'h8A) , 'h8A) , 'h8A) , 'h82) , 'h82) , 'h40)	Write	0x8A	to RI	EG[05]
11 11	E0 E1 E2 E3 E4	13 13 13 13 13 13	y RA 29 03 08 03 01 A		// F // F // F // F	REG_ REG_ REG_	_WR(_WR(_WR('hE1 'hE2 'hE3), 'h29) , 'h03) 2, 'h0B) 3, 'h03) 4, 'h01)				
//Set 11 11 11 11 11 11 11	tup L 10 12 13 14 15 1A 1B	CD 13 13 13 13 13 13 13	Pane 04 85 03 7F 00 FF 02		// F // F // F // F	REG REG REG REG REG REG	_WR(_WR(_WR(_WR(_WR(_WR('h12 'h13 'h14 'h15 'h1 <i>4</i>	, 'h04) , 'h85) , 'h03) , 'h7F) , 'h00) , 'hFF) 3, 'h02)				

// Setup Main Window

 736 11 AA 	20 21 22 23 24 25 26 27 28 29 AA	13 13 13 13 13 13 13 13 13 13 AA	00 00 00 00 00 00 00 00 00 00 00 00 00	// REG_WR('h20, 'h00) // REG_WR('h21, 'h00) // REG_WR('h22, 'h00) // REG_WR('h23, 'h00) // REG_WR('h24, 'h00) // REG_WR('h25, 'h04) // REG_WR('h25, 'h00) // REG_WR('h27, 'h00) // REG_WR('h29, 'h00) // REG_WR('h29, 'h00) // NOP
//Se 11 11 11 11 11 11	etup (50 51 52 53 54 55	Canva 13 13 13 13 13 13	as Windo 00 00 00 00 00 04	w // REG_WR('h50, 'h00) // REG_WR('h51, 'h00) // REG_WR('h52, 'h00) // REG_WR('h53, 'h00) // REG_WR('h54, 'h00) // REG_WR('h55, 'h04)
//Se 11 11 11 11 11 11 11 11	tup 4 56 57 58 59 5A 5B 5C 5D 5E	13 13 13 13 13 13	Window 00 00 00 00 00 00 04 00 03 02	// REG_WR('h56, 'h00) // REG_WR('h57, 'h00) // REG_WR('h58, 'h00) // REG_WR('h59, 'h00) // REG_WR('h5A, 'h00) // REG_WR('h5B, 'h04) // REG_WR('h5D, 'h03) // REG_WR('h5E, 'h02)
//Se 11 11 11 11 11 11 11 11 11 11 11 11 11	tup [BC BD BE C0 C1 C2 C3 C6 C7 C8 C9 CA C8 C9 CA C8 C9 CA B6 AA B6 12	DMA 13 13 13 13 13 13 13 13 13 13 13 13 13	00 02 00 00 00 00 00 00 00 00 00 04 00 03 00 04 C0 01	Data from Flash to Display RAM // REG_WR('hBC, 'h00) // REG_WR('hBD, 'h02) // REG_WR('hBE, 'h00) // REG_WR('hC0, "h00) // REG_WR('hC1, "h00) // REG_WR('hC2, 'h00) // REG_WR('hC3, 'h00) // REG_WR('hC6, 'h00) // REG_WR('hC6, 'h00) // REG_WR('hC8, 'h00) // REG_WR('hC8, 'h00) // REG_WR('hC8, 'h00) // REG_WR('hB6, 'h04) // REG_WR('hB6, 'h01) // NOP // REG_WR('hB6, 'h00) // REG_WR('hB6, 'h00) // REG_WR('h12, 'h40) // Exit

Note: Power-on display unit restricts program codes & display data, fonts or required contents for program must exist in the same serial flash. If Host needs to switch to another serial flash then following codes & display data etc. will point to that serial flash.

10.2 SPI Master

In LT7680's master SPI transmission data, the serial clock signal SFCLK is synchronized and sampled to two serial data lines. Master will place the relevant information on the SFDO signal line for the slave device to catch data in the first half of the clock edge. In Serial Master Control Register [SPIMCR2] of bit[1:0], CPOL and CPHA have 4 possible protocol modes to choose from. The master and slave device must operate under the same frequency.

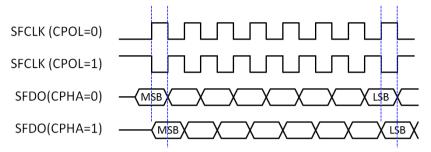


Figure 10-2: Master SPI Data Transfer

Transmitting Data Bytes

The SPI transmission can be initialized by the host setup the control register. The method to initialize data is to write data to the Register SPIDR (REG[B8h]). The data written to SPDIR is actually written to a FIFO which has 16 bytes depths, also known as "Write-FIFO". Each write access adds a data byte to the Write-FIFO. When the SS_Active is set to 1 and the FIFO is not empty, LT7680 will start get the data that first written into "Write-FIFO" transfer to Slave.

Receiving Data Bytes

Receiving data is done simultaneously with transmitting data; whenever a data byte is transmitted a data byte is received. For each byte that needs to be read from a device, a dummy byte has to be written to the Write FIFO. That mean is use the dummy data write cycle to activate the SPI while receiving the data. Whenever the transfer done, the received data is written in the "Read-FIFO". The "Read-FIFO" is the counterpart of the Write-FIFO. It is an independent 16 bytes deep FIFO. The FIFO contents can be read by reading from the Register [SPIDR] (REG[B8h]).

FIFO Overrun

When FIFO is full, writing a new data into "Write-FIFO" will overwrite the oldest data. Writing data to "Write-FIFO" via [SPIDR] registers can cause data errors if it causes overflow. Then the data transmitted using the SPI interface will not be the first data entered, but the data that finally enters the FIFO. The following example of Figure 10-3, WP is write pointer, when "Write-FIFO" is full, and then next data written in FIFO will overwrite the first one. The RP is read pointer, and if the FIFO read did not move before, RP will stop at the forefront. But when a overflow occurs, FIFO read will get wrong data.

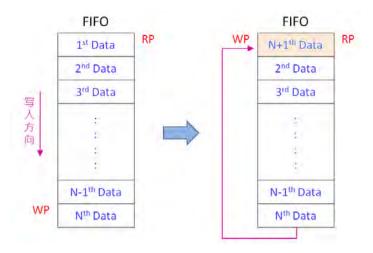


Figure 10-3: FIFO Overrun Example

The only way to recover from this situation is to reset the Write Buffer. Both the Read FIFO and the Write FIFO are reset when the Slave Select signal active [SS_ACTIVE] bit is cleared ("0") Read FIFO overruns might be less destructive. Especially when the SPI bus is used to transmit data only, and the received data is simply ignored. So the Read FIFO overruns is irrelevant. But, if the SPI bus is used to transmit and receive data, it is important to keep the Read FIFO aligned. The easiest way to do this is to perform a number of dummy reads equal to the amount of bytes transmitted modulo 16.

Ndummy_reads = Ntransmitted_bytes mod 16

Note: If the "Read-FIFO" is not empty, storing 16 of data is bound to cause overwritten. Therefore, Host must confirm that "Read-FIFO" is not empty until you receive 16 bytes data.

Reference Code for SPI Master Loop Test (Connect SFDO to SFDI)

REG_WR ('hBB, 8'h1f) ; REG_WR ('hB9, 8'b0001_1111) ;	//Divisor, configure SPI clock frequency // {1'b0, mask, SS#_sel, ss_active, ovfirqen, emtirqen, // cpol, cpha}, SS# low
REG_WR ('hB8, 8'h55) ;	// TX
REG_WR ('hB8, 8'haa) ;	// TX
REG_WR ('hB8, 8'h87) ;	// TX
REG_WR ('hB8, 8'h78) ;	// TX
wait (INT#) ;	
REG_RD ('hBA, acc) ;	
while (acc != 8'h84) begin	
\$display ("wait for FIFO empty	.");
REG_RD ('hBA, acc) ;	
end	
REG_WR ('hBA, 8'h04) ;	// clear interrupt flag
REG_RD ('hB8, 8'h55) ;	// RX
REG_RD ('hB8, 8'haa) ;	// RX
REG_RD ('hB8, 8'h87) ;	// RX
REG_RD ('hB8, 8'h78) ;	// RX
REG_WR ('hB9, 8'b0000_1111) ;	// {1'b0, mask, SS#_sel, ss_active, ovfirqen, emtirqen, // cpol, cpha}, SS# high.

10.3 Serial Flash Controller

🗸 LT7680

LT7680 builds in a SPI Master interface for Serial Flash/ROM, supporting for protocol of 4-BUS (Normal Read), 5-BUS (FAST Read), Dual mode 0, Dual mode 1 with Mode 0/Mode 3. Serial Flash/ROM function can be used for FONT mode and DMA mode. FONT mode means that the external serial Flash/ROM is treated as a source of character bitmap. DMA mode means that the external Flash/ROM is treated as the data source of DMA (Direct Memory Access). Host can speed up the data transfer to display memory and Host don't need to intervene by this mode.

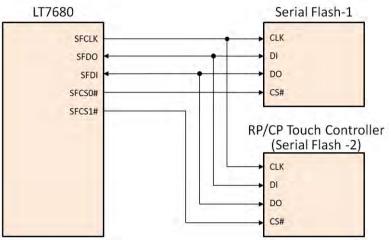


Figure 10-4: Application Circuit of Serial Flash/ROM

About Serial Flash/ROM read command protocol setting, please refer to Table 10-2 as below:

Table 10-2: Read C	Command	Protocol of	SPI Flash
--------------------	---------	--------------------	-----------

REG [B7h] Bit[3:0]	Read Command Code
000xb	1x Read Command Code – 03h Normal read speed. Flash to LT7680 data input is SFDI pin. Without dummy cycle between address and data.
010xb	1x Read Command Code – 0Bh To some Serial Flash provide Faster read speed. Flash to LT7680 data input is SFDI pin. Eight dummy cycles inserted between address and data.
1x0xb	1x Read Command Code – 1Bh To some Serial Flash provide High read speed. Flash to LT7680 data input is SFDI pin. Sixteen dummy cycles inserted between address and data.
xx10b	2x Read Command Code – 3Bh Interleaved data input on SFDI and SFDO pins. Eight dummy cycles inserted between address and data phase. (Mode 0)
xx11b	2x Read Command Code – BBh Address output & data input interleaved on SFDI and SFDO pins. Four dummy cycles inserted between address and data phase. (Mode 1)

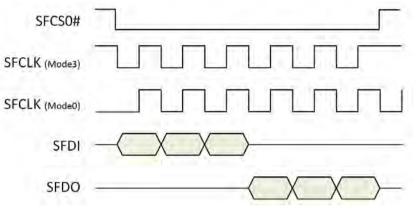


Figure 10-5: Mode 0 and Mode 3 Protocol

Figure 10-6 is a Timing diagram of Read Commands for SPI Flash Memory. If REG[B7h] bit5=0, the address line is 24bits and requires 24 clock. If REG[B7h] bit5=1, the address line is 32bits and requires 32 clock.

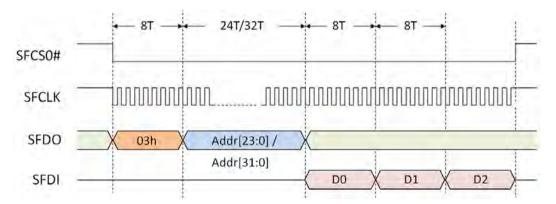


Figure 10-6: Normal Read Command of SPI Flash

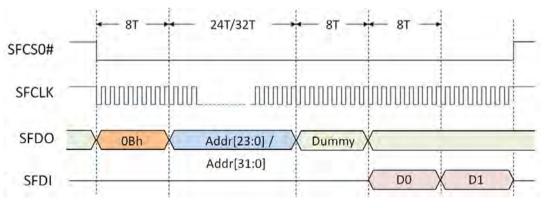


Figure 10-7: SPI Fast Read Command of SPI Flash

Figure 10-8 shows flash to LT7680 data input as interleaved input, and data input appears on SFDI and SFDO pins. If REG[B7h] bit5=0 represents an address line of 24bits, it requires 24 clocks. If REG[B7h] bit5=0 represents an address line of 32bits, it requires 32 clocks.

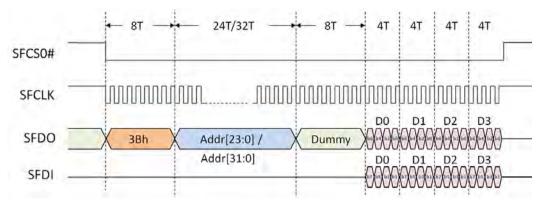


Figure 10-8: SPI Flash Read Command (Data and Address are Interleaved)

Figure 10-9 shows LT7680 address output and data input are interlaced, data and address are interleaved on SFDI and SFDO pins. If REG[B7h] bit5=0 on behalf of the address line is 24bits, because it is interleaved input so only 12 of clock. If REG[B7h] bit5=1 represents an address line of 32bits, only 16 clock are required.

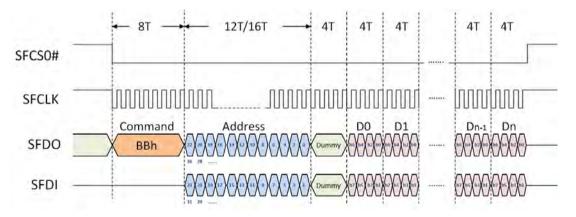


Figure 10-9: SPI Flash Read Command (Data and Address are Interleaved)

10.3.1 External Serial Flash

External Flash Memory can be used as an source of the image data. In Graphics Mode, Host can use DMA (Direct Memory access) mode to access data of External Flash Memory. That's mean the Flash Memory can be used as the source of DMA, and developer can store a large amount of display data first. So Host don't need take a lot of time to transfer large and commonly used graphics data to LT7680's Display RAM.

The data format of external Serial Flash Memory must be consistent with the format of the Display RAM. The graphics data format for Flash Memory are as follows:

Addr	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Addr	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0001h	R_1^7	R_1^6	R_{1}^{5}	G_1^{7}	G_1^{6}	G_1^{5}	B ₁ ⁷	B ₁ ⁶	0000h	R_0^7	R_0^{-6}	R_0^{5}	G_0^{7}	G_0^{6}	G_0^{5}	B_0^7	B_0^{6}
0003h	R_3^{7}	R_3^6	R_3^{5}	G_3^{7}	G_3^{6}	G ₃ ⁵	${\sf B_{3}}^{7}$	B_{3}^{6}	0002h	R_2^{7}	R_2^{6}	R_2^{5}	G_2^{7}	G_2^{6}	G_2^{5}	B_2^{7}	B ₂ ⁶
0005h	$R_5^{\ 7}$	R_5^{6}	R_5^{-5}	${G_5}^7$	G_5^{6}	${\sf G}_5^{\ 5}$	$B_5^{\ 7}$	B_5^{6}	0004h	R_4^7	R_4^{6}	R_4^{5}	G_4^{7}	G_4^{6}	G_4^{5}	B_4^{7}	B_4^{6}
0007h	R_7^7	R_7^6	R_{7}^{5}	G ₇ ⁷	${\sf G_7}^6$	G ₇ ⁵	B ₇ ⁷	B ₇ ⁶	0006h	R_6^7	R_6^6	R_6^{-5}	G_6^{7}	G_6^6	${\sf G_6}^5$	B_6^7	B_6^6
0009h	R_9^7	R_9^6	R_9^5	G_9^{7}	G_9^6	G_9^{5}	B_9^7	B_9^6	0008h	R_8^7	R_8^6	R_8^5	G_8^{7}	G_8^{6}	G ₈ ⁵	B ₈ ⁷	B ₈ ⁶
000Bh	R_{11}^{7}	R_{11}^{6}	R_{11}^{5}	G_{11}^{7}	G_{11}^{6}	${G_{11}}^5$	B_{11}^{7}	B ₁₁ ⁶	000Ah	R_{10}^7	R_{10}^{6}	R_{10}^{5}	G_{10}^{7}	G_{10}^{6}	$G_{10}^{\ 5}$	B_{10}^{7}	B ₁₀ ⁶

Table 10-4: 16bpp Image Data Format of Serial Flash

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Addr	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	R_0^7	R_0^{-6}	R_0^{5}	R_0^4	R_0^{3}	G_0^{7}	G_0^{6}	G_0^{5}	0000h	G_0^4	G_0^{3}	G_0^2	B_0^{7}	B_0^{6}	${\sf B_0}^5$	B_0^4	B_0^{3}
2	R_1^7	R_1^{6}	R_1^{5}	R_1^4	R_1^{3}	G_1^{7}	G_1^{6}	G_1^{5}	0002h	G_1^4	G_1^{3}	G_1^2	B ₁ ⁷	B ₁ ⁶	B1 ⁵	B_1^4	B ₁ ³
3	R_2^7	R_2^{6}	R_2^{5}	R_2^4	R_2^{3}	G_2^{7}	G_2^{6}	G_2^{5}	0004h	G_2^4	G_2^{3}	G_2^2	B ₂ ⁷	B ₂ ⁶	B_{2}^{5}	B ₂ ⁴	B ₂ ³
4	R_3^7	R_3^{6}	R_3^{5}	R_3^4	R_3^{3}	G_3^{7}	G_3^{6}	G_3^{5}	0006h	G_3^4	G_{3}^{3}	G_3^2	B_{3}^{7}	B_3^{6}	${\sf B_{3}}^{5}$	B_3^4	B ₃ ³
5	R_4^7	R_4^{6}	R_4^{5}	R_4^4	R_4^{3}	G_4^{7}	G_4^6	G_4^{5}	0008h	G_4^4	G_4^{3}	G_4^2	B_4^7	B_4^{6}	B_4^{5}	B_4^4	B_4^3
6	R_5^7	R_5^6	${\sf R_{5}}^{5}$	R_5^4	R_{5}^{3}	G_5^{7}	G_5^{6}	${\sf G}_5^{5}$	000Ah	G_5^4	G_{5}^{3}	G_5^2	${\sf B_{5}}^{7}$	B_5^{6}	${\sf B_{5}}^{5}$	B_5^4	B ₅ ³

Table 10-5: 24bpp Image Data Format of Serial Flash

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Addr	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	G_0^{7}	G_0^{6}	G_0^{5}	G_0^4	G_0^{3}	G_0^2	G_0^{-1}	G_0^{0}	0000h	B ₀ ⁷	B_0^{6}	B ₀ ⁵	B_0^4	B_0^{3}	B_0^2	B_0^1	B_0^0
2	B ₁ ⁷	B ₁ ⁶	B1 ⁵	B ₁ ⁴	B ₁ ³	B_1^{2}	B_1^{1}	B_1^{0}	0002h	R_0^7	R_0^{6}	R_0^{5}	R_0^4	R_0^{3}	R_0^2	R_0^{-1}	R_0^0
3	R_1^7	R_1^6	R_{1}^{5}	R_1^4	R_1^{3}	R_1^2	R_1^1	R_1^0	0004h	G ₁ ⁷	G_1^{6}	G1 ⁵	G_1^4	G_1^{3}	G_1^2	G_1^1	G_1^{0}
4	G_2^{7}	G_2^{6}	G_2^{5}	G_2^4	G_2^{3}	G_2^2	G_2^{-1}	G_2^{0}	0006h	B ₂ ⁷	B ₂ ⁶	B ₂ ⁵	B ₂ ⁴	B_{2}^{3}	B_2^2	B_2^{1}	B_2^0
5	${\sf B_{3}}^{7}$	B_3^{6}	B_{3}^{5}	B_3^4	B_3^{3}	B_{3}^{2}	B_3^{1}	B_3^{0}	0008h	R_2^7	R_2^{6}	R_2^{5}	R_2^4	R_2^{3}	R_2^2	R_2^{-1}	R_2^0
6	R_3^7	R_3^{6}	R_3^{5}	R_3^4	R_3^{3}	R_3^2	R_3^{-1}	R_3^{0}	000Ah	G_{3}^{7}	G_3^{6}	G_{3}^{5}	G_3^4	G_{3}^{3}	G_3^2	G_3^{-1}	G_3^{0}

DMA function provides a faster method for user to update/transfer mass data to display memory. The only source of DMA function in LT7680 is external Serial Flash/ROM interface. There are two kinds of data type defined for the DMA. One is Linear Mode and the other is Block Mode. It provides a flexible selection for user application. The destination of DMA function is dominated by active window in display memory. When DMA function is active, the specific data from Serial Flash/ROM will be transferred one by one to Display Memory by LT7680 automatically. After the DMA function is completed, LT7680 will generate an interrupt to notify the Host. Please refer to following sections for the detail operation.

10.3.2 DMA in Linear Mode for External Serial Flash

The DMA Linear Mode used to send CGRAM data for Display RAM. Active windows color depth must be set as 8bpp.

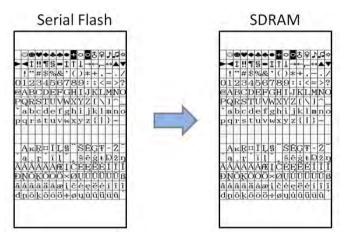


Figure 10-10: DMA in Linear Mode for External Serial Flash

10.3.3 DMA in Block Mode for External Serial Flash

DMA access in this block mode is primarily used to transfer graphics data. The process unit is pixel. Please refer to following diagram and flowchart.

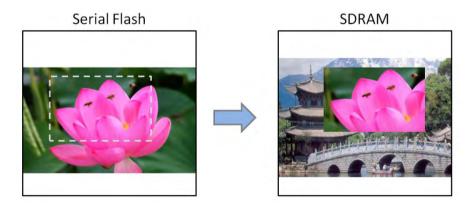


Figure 10-11: DMA in Block Mode for External Serial Flash

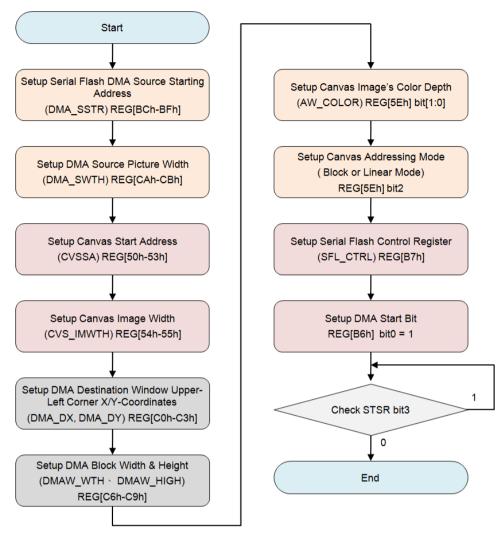


Figure 10-12: DMA Data Transfer Flowchart (Polling Mode)

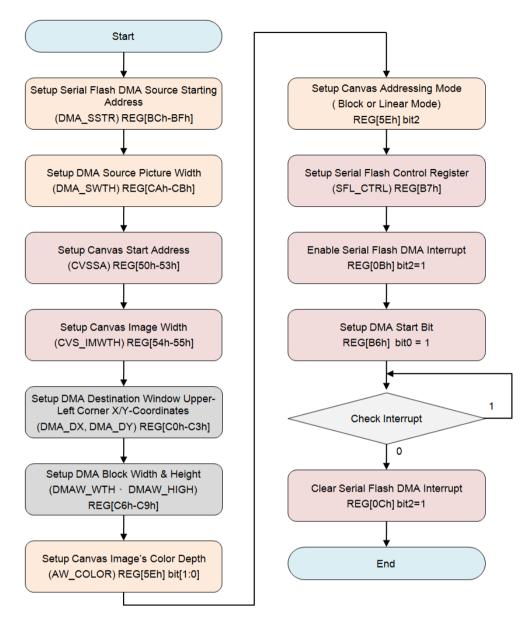


Figure 10-13: DMA Data Transfer Flowchart (Interrupt Mode)

11. GPIO Interface

LT7680 provides many GPIO signals that can be extended as MCU I/O interfaces. Usually these GPIO signals are shared with other control signals. Please refer to Table 11-1 as below. And note these GPIO signals are available only when their mapping control signals were disabled.

GPIO Port	Shared Signals
GPIOA[7]	GPIOA[7]
GPIOC[7]	PWM[0]
GPIOC[4:0],	{ SFCS1#, SFCS0#, SFDI, SFDO, SFCLK }
GPIOD[7:6],	{ PD[18], PD[2] }

Table 11-1: GPIO Port vs. Shared Signals

These GPIO signals are set to output or input, as well as to output data or read input data, are controlled by REG[F0h-F6h]. Please refer to Chapter 13 - Register Description.

12. Power Management

LT7680 has a total of four power modes of operation, based on the power consumption from high to Low: Normal mode, Standby mode, Suspend mode and sleep mode. These four working modes are set by register REG[DFh]. The following are four working modes of clock action comparison tables:

	Normal Mode	Standby Mode	Suspend Mode	Sleep Mode
ltem	PLL Enable	Serial MCU	Serial MCU	Serial MCU
MCLK	MPLL Clock	MPLL Clock	OSC	Stop
CCLK	CPLL Clock	OSC	OSC	OSC
PCLK	PPLL Clock	Stop	Stop	Stop
CPLL	ON	ON	OFF	OFF
MPLL	ON	ON	OFF	OFF
PPLL	ON	ON	OFF	OFF

 Table 12-1: Power Management vs. Clock Active

Note:

- 1. When LT7680 enters the power saving mode, the LCD interface will not output the signal. Therefore, before entering the power-saving mode, Host need to do the LCD module display off or power off to avoid LCD polarization damage.
- 2. The "OSC" means external X"tal oscillator.

12.1 Normal Mode

In this mode, three of the internal PLL functions are working normally. That is, Host setup Registers to control three PLL respectively produce CCLK (Core Clock), MCLK (Display RAM Clock) and PCLK (LCD scan Clock). Because the PLL need some time to work stable, therefore, Host must first through the register 01h bit7 to know whether the PLL frequency is in a stable state.

12.2 Standby Mode

If setup REG[DFh] bit[1:0] to 01b, LT7680 will enter Standby mode. The System Clock (CCLK) and LCD-Scan Clock (PCLK) will stop. The Display RAM Clock is active and provides by MCLK.

Enter Standby Mode:

- Select Standby Mode (REG[DFh] bit[1:0] = 01b)
- Setup REG[DFh] bit7 to 1 (Enter Standby Mode)
- Host may check the bit1 of Status Register (STSR), and wait this bit become to 1 to make sure LT7680 enter Standby mode.

Back to Normal Mode:

- Setup REG[DFh] bit7 to 0 (Quit from Standby Mode)
- The Host may check the bit1 of Status Register (STSR), and wait this bit become to 0 to make sure LT7680 back to Normal Mode.

12.3 Suspend Mode

If setup REG[DFh] bit[1:0] to 10b, LT7680 will enter Suspend mode. The System Clock (CCLK), Display RAM Clock(MCLK) and LCD-Scan Clock (PCLK) will stop. The clock of Display RAM will provides by OSC Clock.

Enter Suspend Mode:

- According to OSC frequency to setup appropriate Display RAM(SDRAM) Refresh Clock
- Select Suspend Mode(REG[DFh] bit[1:0] = 10b)
- Setup REG[DFh] bit7 to 1 (Enter Suspend Mode)
- The Host may check the bit1 of Status Register (STSR), and wait this bit become to 1 to make sure LT7680 enter Suspend Mode.

Back to Normal Mode:

- Setup REG[DFh] bit7 to 0 (Quit from Suspend Mode)
- The Host may check the bit1 of Status Register (STSR), and wait this bit become to 0 to make sure LT7680 back to Normal Mode.

12.4 Sleep Mode

If setup REG[DFh] bit[1:0] to 11b, LT7680 will enter Sleep Mode. And all of Clocks and PLL will be stop operate.

Enter Sleep Mode:

- Select Sleep Mode (REG[DFh] bit[1:0] = 11b)
- Setup REG[DFh] bit7 to 1 (Enter Sleep Mode)
- ♦ If REG[E0h] bit7 is 0, the Display RAM will enter Power Down mode that before LT7680 enter Sleep mode. If REG[E0h] bit7 is 1, the Display RAM will enter Refresh mode.
- ◆ If Host interface is Serial Mode, then OSC will not be stop.
- The Host may check the bit1 of Status Register (STSR), and wait this bit become to 1 to make sure LT7680 enter Sleep Mode.

Back to Normal Mode:

- Setup REG[DFh] bit7 to 0 (Quit from Sleep Mode)
- ◆ If OSC was be stopped in Sleep mode, the Host have to enable OSC.
- The Host may check the bit1 of Status Register (STSR), and wait this bit become to 0 to make sure LT7680 back to Normal Mode.

13. Register Description

LT7680 provides a compatible 4 forms of Host interface, and the internal registers are read and written through these Host interface cycles to complete. LT7680 contains a Status Register and many Instruction Registers. Status Registers can read data through the state reading period, and it can only be read and cannot be written. Instruction Registers can control most of the functions through the "Command Write" cycle and the "Data Write" cycle. "Command Write" specifies the address of the register, and then the "Data Write" period can be written to the specified register. And when the specified register data is to be read, the master will need to send the "Command Write" cycle first. Then use the "Data Read" cycle to read the data. In other words, "Command Write" is the set register address, "Data Read" is to read register data.

Host Interface			8080 Ty	3080 Type MCU 6800 Type MCU			
Cycle	CS#	A0	RD# EN	WR# RW#	RD# EN	WR# RW#	Action Description
Command Write	0	0	1	0	1	0	Write Address of Register
Status Read	0	0	0	1	1	1	Read Status Register Data
Data Write	0	1	1	0	1	0	Write Data to Register or Memory
Data Read	0	1	0	1	1	1	Read Data from Register or Memory

All of the Registers of LT7680 are describe as below. Each register contains 8bits data. In the register table include the detail description, default value and access attribute (RO: Read Only, WO: Write Only, RW: Readable and Writeable).

13.1 Status Register

Table 13-2: Status Register (STSR)

Bit	Description	Default	Access
	Memory Write FIFO Full Indicate		
	0: The FIFO of Memory Write not Full		
7	1: The FIFO of Memory Write was Full	0	RO
	Host can write data to memory only if the Memory Write FIFO is not full.		
	Memory Write FIFO Empty Indicate		
	0: The FIFO of Memory Write not Empty		
6	1: The FIFO of Memory Write was Empty	1	RO
	When the Memory Write FIFO is empty, Host can continuous to write 8bpp data with 64 pixels, 16bpp data with 32 pixels or 24bpp data with 16 pixels.		

Bit	Description	Default	Access
	Memory Read FIFO Full Indicate		
	0: The FIFO of Memory Read not Full		
5	1: The FIFO of Memory Read was Full	0	RO
	When the Memory Read FIFO was Full, Host can continuous to read 8bpp data with 64 pixels, 16bpp data with 32 pixels or 24bpp data with 16 pixels.	-	
	Memory Read FIFO Empty Indicate		
	0: The FIFO of Memory Read not Empty		
4	1: The FIFO of Memory Read was Empty	1	RO
	When the Memory Read FIFO not Empty, Host can continuous read pixel data from Memory.		
	Core Task is Busy, Fontwr_Busy		
	This bit represents whether the action is completed for LT7680 BTE, Geometry engine, DMA, text writing, or graphic writing.		
	0: The action is complete or idle.		
	1: The action is not completed, in a busy state.		
3	When the Host program switches text and graphics mode, or changes the base diagram related settings, the program must first verify that the LT7680 is idle.	0	RO
	Note: In text mode, if program changes text rotation, line spacing, character spacing, foreground color, background color, and text/graphics settings, Host must confirm this bit is 0.		
	Display RAM Ready for Access		
	0: Display RAM is not ready for access		
2	1: Display RAM is ready for access	0	RO
	Before check this bit, Host has to setup REG[E4h] bit0 "SDR_INIT" as 1.		
	Operation Mode Status		
	0: Normal operation state		
	1: Inhibit operation state		
1	Inhibit operation state means internal reset event keep running or initial display still running or chip enter power saving state. In power saving state, this bit becomes 1 until PLL clock stop.	0	RO
	Interrupt Pin State		
0	0: without interrupt active 1: interrupt active	0	RO

13.2 Configuration Registers

REG[00h] Software Reset Register (SRR)

Bit	Description	Default	Access
	Reconfigure PLL frequency Write "1" to this bit will reconfigure PLL frequency. Note:		
7	1. When user change PLL relative parameters, PLL clock won"t change immediately, user must set this bit as "1" again.	0	RW
	2. User may read (check) this bit to know whether system already switch to PLL clock or not yet.		
6-1	Reserved	0	RO
0	Software Reset (Reconfigure PLL Frequency) 0: Normal Operation. 1: Software Reset. The bit will auto clear after reset. Software Reset only reset internal state machine. Configuration Registers value won"t be reset. So all read-only flag in the register will return to its initial value. User should have proper action to make sure flag is in desired state.	0	WO
0	 Warning Condition Flag 0: No warning operation occurred 1: Warning condition occurred. Please refer to REG[E4h] bit3 description. 	0	RO

REG[01h] Chip Configuration Register (CCR)

Bit	Description	Default	Access
7	Check PLL Ready Host may read (check) this bit to know whether system already switch to PLL clock or not yet. Read "1" means PLL clock ready and switch successfully.	0	RW
6	 Mask WAIT# on CS# De-assert 0: No Mask, WAIT# keep assert if internal state keep busy and cannot accept next R/W cycle, no matter CS# assert/de-assert. If Host cycle cannot be extended while WAIT# keep low, Host program should poll WAIT# and wait it goes high then start next access. 1: Mask, WAIT# de-assert when CS# de-assert. Use in Host cycle can be extended by WAIT# automatically. 	1	RW
5	Keypad-scan Enable/Disable 0: Disable 1: Enable	0	RW

Bit	Description	Default	Access
4-3	TFT Panel I/F Setting 00b: 24bits TFT Output 01b: 18bits TFT Output 10b: 16bits TFT Output 11b: Without TFT Output Other unused TFT output pins are set as GPIO or Key–Scan function.	01b	RW
2	I2C Master Interface Enable/Disable 0: Disable (GPIO Function) 1: Enable (I2C Master Function) This bit has higher priority than Keypad-scan Enable bit. i.e. if I2C master and Keypad-scan are enable simultaneously then KI[0] and KO[0] will become I2C function & other KI/KO pins still keep Keypad-scan function.	0	RW
1	Serial Flash or SPI Interface Enable/Disable 0: Disable (GPIO Function) 1: Enable (SPI Master Function)	0	RW
0	Host Data Bus Width Selection 0: 8bits Data Bus 1: 16bits Data Bus If Serial Host I/F selected or in initial display operation period, LT7680 will force this bit as 0 and only allow 8bits access.	0	RW

REG[02h] Memory Access Control Register (MACR)

Bit	Description	Default	Access
7-6	Host Read/Write Image Data Format Oxb: Direct Write, for below I/F format: 1.8bits MCU I/F. 2.16bits MCU I/F with 8bpp data mode 1 & 2. 3.16bits MCU I/F with 16/24bpp data mode 1. 4.Serial SPI/I2C I/F. 10b: Mask high byte of each data (ex. 16 bit MPU I/F with 8-bpp data mode 1) 11b: Mask high byte of even data (ex. 16 bit MPU I/F with 24-bpp data mode 2)	0	RW
5-4	Host Read Memory Direction (Only for Graphic Mode) 00b: Left→Right then Top→Bottom. 01b: Right→Left then Top→Bottom. 10b: Top→Bottom then Left→Right. 11b: Bottom→Top then Left→Right. Ignored if canvas in linear addressing mode.	0	RW
3	NA	0	RO
2-1	 Host Write Memory Direction (Only for Graphic Mode) 00b: Left→Right then Top → Bottom (Original) 01b: Right → Left then Top → Bottom (Horizontal Flip) 10b: Top → Bottom then Left → Right (Rotate right 90° & Horizontal flip) 11b: Bottom → Top then Left → Right (Rotate left 90°) Ignored if canvas in linear addressing mode. 	0	RW
0	NA (must keep it as 0)	0	RO

REG[03h] Input Control Register (ICR)

Bit	Description	Default	Access
7	Interrupt Pin Active Level 0: Low Active 1: High Active	0	RW
6	External Interrupt Signal - PSM[0] Pin De-bounce 0: Without De-bounce 1: Enable De-bounce (1,024 OSC Clock)	0	RW
5-4	External Interrupt Signal - PSM[0] Pin Trigger Type 00b: low level trigger 01b: falling edge trigger 10b: high level trigger 11b: rising edge trigger	00b	RW
3	NA	0	RW
2	Text Mode Enable 0: Graphic mode 1: Text mode Before toggle this bit user must make sure core task busy bit in status register is done or idle. This bit always 0 (in graphic mode) if canvas" address mode is linear mode.	0	RW
1-0	 Memory Port Read/Write Destination Selection 00b: Image buffer (Display RAM) for image data, pattern, user-characters. Support Read-modify-Write. 01b: Gamma table for Color Red/Green/Blue. Each color"s gamma table has 256 bytes. User need specify desired gamma table and continuous write 256 bytes. 10b: Graphic Cursor RAM (only accept low 8-bits MPU data, similar normal register data r/w.), not support Graphic Cursor RAM read. It contains 4 graphic cursor sets. Each set has 128x16 bits. User need specify target graphic cursor set and continue write 256 bytes. 11b: Color palette RAM. It is 64x12 bits SRAM, so even address" data only low 4 bits are valid. Not support Color palette RAM read. User need continue write 128 bytes. 	0	RW

REG[04h] Memory Data Read/Write Port (MRWDP)

Bit	Description	Default	Access
	Write Function: Memory Write Data		
	Data to write in memory corresponding to the setting of REG[03h][1:0]. Continuous data write cycle can be accepted in bulk data write case.		
	Note:		
	A. Image data in Display RAM: according MPU I/F bit width setting (8/16-bits), Host R/W image data format, canvas color depth and set canvas in block mode.		
	B. Pattern data for BTE operation in Display RAM: according MPU I/F bit width setting (8/16-bits), Host R/W image data format, canvas color depth and set canvas in block mode. Active window's width and height should set as 8x8 or 16x16 depend on user required.		
	C. User-characters in Display RAM: according MPU I/F bit width setting (8/16-bits), Host R/W image data format and set canvas in linear mode.		
	D. Character code: only accept low 8-bits MPU data, similar to normal register R/W. For two bytes character code, input high byte first. To user defined Character, code < 8000h is half size, code >= 8000h is full size.		
7-0	E. Gamma table data: only accept low 8-bits MPU data. User must set "Select Gamma table sets([3Ch] Bit6-5)" to clear internal Gamma table's address counter then start to write data. User should program 256 bytes data to memory data port.		RW
	F. Graphic Cursor RAM data: only accept low 8-bits MPU data. User must set "Select Graphic Cursor sets" bits to clear internal Graphic Cursor RAM address counter then start to write data.		
	G. Color palette RAM data: only accept low 8-bits MPU data. User must program full Color palette RAM in a continuous 128 byte data write to memory data port and cannot change register address.		
	Read Function: Memory Read Data		
	Data to read from memory corresponding to the setting of REG[03h][1:0]. Continuous data read cycle can be accepted in bulk data read case.		
	Note1: if you set this port address from different port address, must issue a dummy read, the first data read cycle is dummy read and data should be ignored. Graphic Cursor RAM & Color palette RAM data are not support data read function.		
	Note2: read memory data is 4 bytes alignment no matter color depth setting.		
	Note3: If user write data to Display RAM user must make sure write FIFO is empty before he change register number or core task busy status bit becomes idle.		

13.3 PLL Setting Register

REG[05h] PCLK PLL Control Register 1 (PPLLC1)

Bit	Description	Default	Access
7-6	PCLK Output Divider Ratio, OD[1:0] 00b: Divided by 1. 01b: Divided by 2. 10b: Divided by 3. 11b: Divided by 4.	0	RW
5-1	PCLK Input Divider Ratio, R[4:0] The value should be 2~31.	10	RW
0	PCLK Feedback Divider Ratio of Loop, N[8] Total 9 bits, the value should be 2~511	0	RW

REG[06h] PCLK PLL Control Register 2 (PPLLC2)

Bit	Description	Default	Access
7-0	PCLK PLLDIVN[7:0]	<u> </u>	RW
	Total 9 bits, the value should be 2~511.	60	RVV

Note: PCLK is used by TFT panel"s scan clock and derived from CCLK.

REG[07h] MCLK PLL Control Register 1 (MPLLC1)

Bit	Description	Default	Access
	MCLK output divider Ratio, OD[1:0]		
	00b: Divided by 1.		
7-6	01b: Divided by 2.	0	RW
	10b: Divided by 3.		
	11b: Divided by 4.		
5-1	MCLK Input Divider Ratio, R[4:0]	10	RW
	The value should be 2~31.		
0	MCLK Feedback Divider Ratio of Loop, N[8]	0	
	Total 9 bits, the value should be 2~511.		RW

REG[08h] MCLK PLL Control Register 2 (MPLLC2)

Bit	Description	Default	Access
7.0	MCLK PLLDIVN[7:0]	133	RW
7-0	Total 9 bits, the value should be 2~511.	100	L A A

Note: MCLK is used by internal Display RAM"s clock.

REG[09h] CCLK PLL Control Register 1 (CPLLC1)

Bit	Description	Default	Access
	CCLK Output Divider Ratio, OD[1:0]		
	00b: Divided by 1.		
7-6	01b: Divided by 2.	0	RW
	10b: Divided by 3.		
	11b: Divided by 4.		
5-1	CCLK Input Divider Ratio, R[4:0]	10	RW
	The value should be 2~31.		
0	CCLK Feedback Divider Ratio of Loop, N[8]		
	Total 9 bits, the value should be 2~511.	0	RW

REG[0Ah] CCLK PLL Control Register 2 (CPLLC2)

Bit	Description	Default	Access
7-0	CCLK PLLDIVN[7:0]	100	RW
	Total 9 bits, the value should be 2~511.	133	RVV

Note1: CCLK is used by Core"s Clock.

Note2: PLL output frequency is calculated from the following the equation:

FOUT = XI * (N/R)÷ OD

The input frequency XI/R is no less than 1MHz. For example, IN = 10MHz, R[4:0] = 01010, N[8:0] = 100000000, OD[1:0] = 11, then

FOUT = 10MHz * (256 / 10)÷ 4 = 64 MHz

13.4 Interrupt Control Register

REG[0Bh] Interrupt Enable Register (INTEN)

Bit	Description	Default	Access
	Wakeup/Resume Interrupt Enable		
7	0: Disable	0	RW
	1: Enable		
	External Interrupt Input - PSM[0] Enable)		
6	0: Disable	0	RW
	1: Enable		
	I2C Master Interrupt Enable		
5	0: Disable	0	RW
	1: Enable		
	VSYNC Time Base Interrupt Enable		
	0: Disable Interrupt		
4	1: Enable Interrupt	0	RW
	This interrupt event may provide the host processor with Vsync signal information for tearing effect.		
	Keypad-scan Interrupt Enable		
3	0: Disable Interrupt	0	RW
	1: Enable Interrupt		
	Serial Flash DMA Complete / Draw Task Finished / BTE Process Complete etc. Interrupt Enable		
2	0: Disable Interrupt	0	RW
	1: Enable Interrupt		
	PWM Timer-1 Interrupt Enable		
1	0: Disable Interrupt	0	RW
	1: Enable Interrupt		
	PWM Timer-0 Interrupt Enable		
0	0: Disable Interrupt	0	RW
	1: Enable Interrupt		

REG[0Ch] Interrupt Event Flag Register (INTF)

Bit	Description	Default	Access
	Wakeup/Resume Interrupt Flag Write: Clear Interrupt Flag		
	0: No Operation		
7	1: Clear Wakeup/Resume Interrupt Flag	0	RW
-	Read: Read Interrupt Flag		
	0: No Wakeup/Resume Interrupt Happens		
	1: Wakeup/Resume Interrupt Happens		
	External Interrupt Input - PSM[0] Flag Write: Clear PSM[0] Pin Interrupt Flag		
	0: No Operation		
6	1: Clear PSM[0] Interrupt Flag	0	RW
	Read: Read PSM[0] Pin Interrupt Flag		
	0: No PSM[0] Interrupt Happens		
	1: PSM[0] Interrupt Happens		
	I2C Master Interrupt Flag Write: Clear I2C Master Interrupt Flag		
	0: No Operation		
5	1: Clear I2C Master Interrupt Flag	0	RW
_	Read: Read I2C Master Interrupt Flag	_	
	0: No I2C Master Interrupt Happens		
	1: I2C Master Interrupt Happens		
	VSYNC Time Base Interrupt Flag Write: Clear VSYNC Interrupt Flag		
	0: No Operation		
4	1: Clear VSYNC Interrupt Flag	0	RW
	Read: Read VSYNC Interrupt Flag 0: No VSYNC Interrupt Happens 1: VSYNC Interrupt Happens		
	Keypad-scan Interrupt Flag Write: Clear Keypad-scan Interrupt Flag		
3	0: No Operation		
	1: Clear Keypad-scan Interrupt Flag	0	RW
	Read: Read Keypad-scan Interrupt Flag		
	0: No Keypad-scan Interrupt Happens		
	1: Keypad-scan Interrupt Happens		

Bit	Description	Default	Access
2	Serial Flash DMA Complete Draw Task Finished BTE Process Complete etc. Interrupt Flag Write: Clear Process Complete Interrupt Flag 0: No Operation 1: Clear Interrupt Flag Read: Read Process Complete Interrupt Flag 0: No Interrupt Happens 1: Interrupt Happens	0	RW
1	 PWM1 Timer Interrupt Flag Write: Clear PWM1 Interrupt Flag 0: No Operation 1: Clear PWM1 Interrupt Flag Read: Read PWM1 Interrupt Flag 0: No PWM1 Interrupt Happens 1: PWM1 Interrupt Happens 	0	RW
0	 PPWM0 Timer Interrupt Flag Write: Clear PWM0 Interrupt Flag 0: No Operation 1: Clear PWM0 Interrupt Flag Read: Read PWM0 Interrupt Flag 0: No PWM0 Interrupt Happens 1: PWM0 Interrupt Happens 	0	RW

Note: If the Host received interruption, but the flag of this register show not interrupted happen, then Host should be to confirm SPI Master State Register Interrupt Flag of REG[BAh].

REG[0Dh] Mask Interrupt Flag Register (MINTFR)

Bit	Description	Default	Access
	Mask Wakeup/Resume Interrupt Flag		
7	0: Unmask	0	RW
	1: Mask		
	External Interrupt Input - PSM[0] Flag		
6	0: Unmask	0	RW
	1: Mask		
	I2C Master Interrupt Flag		
5	0: Unmask	0	RW
	1: Mask		
	VSYNC Time Base Interrupt Flag		
4	0: Unmask	0	RW
	1: Mask		
3	Keypad-scan Interrupt Flag		
	0: Unmask	0	RW
	1: Mask		

Bit	Description	Default	Access
2	Serial Flash DMA Complete Draw Task Finished BTE Process Complete etc. Interrupt Flag 0: Unmask 1: Mask	0	RW
1	PWM1 Timer Interrupt Flag 0: Unmask 1: Mask	0	RW
0	PWM0 Timer Interrupt Flag 0: Unmask 1: Mask	0	RW

Note: If the Host masking interrupt flag, then the ILT7680 will not send interruption to Host. If only use some not to be masked interrupt flag, Host can check interrupt flag to know whether there is interruption.

REG[0Eh] Pull-High Control Register (PUENR)

Bit	Description	Default	Access
7-6	NA.	0	RO
	GPIO-F[7:0] Pull-High Enable		
5	0: without Pull-up Resistor	0	RW
	1: with Pull-up		
	GPIO-E[7:0] Pull-High Enable		
4	0: without Pull-up Resistor	0	RW
	1: with Pull-up		
	GPIO-D[7:0] Pull-High Enable		
3	0: without Pull-up Resistor	0	RW
	1: with Pull-up		
	GPIO-C[4:0] Pull-High Enable		
2	0: without Pull-up Resistor	0	RW
	1: with Pull-up		
	DB[15:8] Pull- High Enable		
1	0: without Pull-up Resistor	0	RW
	1: with Pull-up		
	DB[7:0] Pull- High Enable		
0	0: without Pull-up Resistor	0	RW
	1: with Pull-up		

Note: These bits are available only when GPIO function enabled.

Bit	Description	Default	Access
7	PD[18] – Function Select		
	0: GPIO-D7	0	RW
	1: KO[4]		
	PD[17] – Function Select		
6	0: GPIO-D5	0	RW
	1: KO[2]		
	PD[16] – Function Select		
5	0: GPIO-D4	0	RW
	1: KO[1]		
	PD[9] – Function Select		
4	0: GPIO-D3	0	RW
	1: KO[3]		
	PD[8] – Function Select		
3	0: GPIO-D2	0	RW
	1: KI[3]		
	PD[2] – Function Select		
2	0: GPIO-D6	0	RW
	1: KI[4]		
	PD[1] – Function Select		
1	0: GPIO-D1	0	RW
	1: KI[2]		
	PD[0] – Function Select		
0	0: GPIO-D0	0	RW
	1: KI[1]		

REG[0Fh] PD for GPIO/Key Function Select Register (PSFSR)

Some of the LCD Data pins are share with GPIO and Keypad-scan pins. If LCD I/F is not 24bpp mode, then PD[18:16 / 8:9 /2:0] could be defined as GPIO or Keypad-scan pins.

13.5 LCD Display Control Registers

REG[10h] Main/PIP Window Control Register (MPWCTR)

Bit	Description	Default	Access
7	PIP-1 Window Enable/Disable 0: PIP-1 Window Disable 1: PIP-1 Window Enable PIP-1window always on top of PIP-2 window.	0	RW
6	PIP-2 Window Enable/Disable 0: PIP-2 Window Disable 1: PIP-2 Window Enable PIP-1 window always on top of PIP-2 window	0	RW
5	NA	0	RO
4	Select Configure PIP 1 or 2 Window's parameters PIP window''s parameter including Color Depth, Starting Address, Image Width, Display Coordinates, Window Coordinates, Window Width and Window Height. 0: To configure PIP 1''s parameters. 1: To configure PIP 2''s parameters.	0	RW
3-2	Main Image Color Depth Setting 00b: 8bpp Generic TFT (256 color) 01b: 16bpp Generic TFT (65K color) 1xb: 24bpp Generic TFT (1.67M color)	1	RW
1	NA	0	RW
0	 To Control Panel's Synchronous Signals 0: Sync Mode → Enable VSYNC, HSYNC, DE 1: DE Mode → Only DE enable, VSYNC & HSYNC in idle state. 	0	RW

REG[11h] PIP Window Color Depth Setting (PIPCDEP)

Bit	Description	Default	Access
7-4	NA	0	RO
3-2	PIP-1 Window Color Depth Setting 00b: 8bpp Generic TFT (256 color) 01b: 16bpp Generic TFT (65K color) 1xb: 24bpp Generic TFT (1.67M color)	1	RW
1-0	PIP-2 Window Color Depth Setting 00b: 8bpp Generic TFT (256 color) 01b: 16bpp Generic TFT (65K color) 1xb: 24bpp Generic TFT (1.67M color)	1	RW

LT7680_DS_ENG / V2.0

REG[12h] Display Configuration Register (DPCR)

Bit	Description	Default	Access
7	PCLK Inversion 0: TFT Panel fetches PD at PCLK rising edge. $PCLK$ PE PD 1: TFT Panel fetches PD at PCLK falling edge. $PCLK$ $PCLK$ $PCLK$ PD PD $PCLK$ $PCLK$ $PCLK$ $PCLK$ PD	0	RW
6	Display ON/OFF 0b: Display Off 1b: Display On	0	RW
5	Display Test Color Bar 0b: Disable 1b: Enable	0	RW
4	This bit must be 0.	0	RW
3	VDIR: Vertical Scan Direction 0: From Top to Bottom 1: From bottom to Top	0	RW
2-0	Parallel PD[23:0] Output Sequence 000b: RGB 001b: RBG 010b: GRB 011b: GBR 100b: BRG 101b: BGR 110b: Gray 111b: Send out Idle State. All data are 0 (Black) or 1(White). This option has to setup with REG[13h].	0	RW

Note: When VDIR = 1, PIP window, Graphic Cursor and Text Cursor function will be disable automatically.

Bit	Description	Default	Access
7	HSYNC Polarity 0: Low Active 1: High Active	0	RW
6	VSYNC Polarity 0: Low Active 1: High Active	0	RW
5	PDE Polarity 0: High Active 1: Low Active	0	RW
4	PDE Idle State 0: Pin "PDE" output Low 1: Pin "PDE" output High This is used to setup the PDE output status in Power Saving mode or Display Off.	0	RW
3	PCLK Idle State 0: Pin "PCLK" output Low 1: Pin "PCLK" output High This is used to setup the PCLK output status in Power Saving mode or Display Off.	0	RW
2	PD Idle State 0: Pins "PD[23:0]" output Low 1: Pins "PD[23:0]" output High This is used to setup the PD output status in Vertical/Horizontal Non-Display Period, Power Saving mode or Display Off.	0	RW
1	HSYNC Idle State 0: Pin "HSYNC" output Low 1: Pin "HSYNC" output High This is used to setup the HSYNC output status in Power Saving mode or Display Off.	1	RW
0	VSYNC Idle State 0: Pin "VSYNC" output Low 1: Pin "VSYNC" output High This is used to setup the VSYNC output status in Power Saving mode or Display Off.	1	RW

REG[13h] Panel Scan Clock and Data Setting Register (PCSR)

Note: The sum of (HST + HPW + HND) had better larger than 64Pixels to prevent scanning FIFO empty. If both PIP1 and PIP2 are enabled and are very close to the left side of the window, there is only a small change in PIP1 and PIP2's UL-X. Please refer to Figure 4-1 TFT-LCD interface Timing diagram.

REG[14h] Horizontal Display Width Register (HDWR)

Bit	Description	Default	Access
7-0	Horizontal Display Width Setting This register is set to a horizontal display width. Its specified LCD screen resolution is 8 pixels in one unit resolution. Horizontal Display Width (pixels) = (HDWR + 1)* 8 + HDWFTR HDWFTR (REG[15h]) is the fine-tuning value for Horizontal Display Width. Each fine-tuning resolution is 1 pixels, and the maximum horizontal width is 2,048 pixels.	4Fh	RW

REG[15h] Horizontal Display Width Fine Tune Register (HDWFTR)

Bit	Description	Default	Access
7-4	NA	0	RO
3-0	Horizontal Display Width Fine Tuning This Register is the fine-tuning value for Horizontal Display Width, and each fine-tuning resolution is 1 pixels.	0	RW

REG[16h] Horizontal Non-Display Period Register (HNDR)

Bit	Description	Default	Access
7-5	NA	0	RO
4-0	Horizontal Non-Display Period This register assign the Period of Horizontal Non-Display. It's also called "Back Porch". Horizontal Non-Display Period (Pixels) = (HNDR + 1)* 8 + HNDFTR HNDFTR (REG[17h]) is the fine-tuning value for Horizontal Non-display Period. Each fine-tuning resolution is 1 pixels, and the maximum horizontal width is 2,048 pixels.	03h	RW

REG[17h] Horizontal Non-Display Period Fine Tune Register (HNDFTR)

Bit	Description	Default	Access
7-4	NA	0	RO
3-0	Horizontal Non-Display Period Fine Tuning This Register is the fine-tuning value for Horizontal Non-display Period, and each fine-tuning resolution is 1 pixels. it is used to support the SYNC mode panel.	06h	RW

REG[18h] HSYNC Start Position Register (HSTR)

Bit	Description	Default	Access
7-5	NA	0	RO
4-0	HSYNC Start Position This register specifies the starting address of the HSYNC. The starting point for the calculation is the point at which the end of the display area is to start producing HSYNC. The basic unit of each adjustment is 8pixel. It's also called "Front Porch". HSYNC Start Position = (HSTR + 1)* 8	1Fh	RW

REG[19h] HSYNC Pulse Width Register (HPWR)

Bit	Description	Default	Access
7-5	NA	0	RO
4-0	HSYNC Pulse Width HSYNC Pulse Width (Pixels)= (HPW + 1)* 8	0	RW

REG[1Ah-1Bh] Vertical Display Height Register (VDHR)

Bit	Description	Default	Access
7-0	Vertical Display Height REG[1Ah] mapping to VDHR [7:0] REG[1Bh] bit[2:0] mapping to VDHR [10:8], bit[7:3] are not used. The height of the vertical display is in line, and the formula is as follows: Vertical Display Height (Line)= VDHR + 1	DFh	RW

REG[1Ch-1Dh] Vertical Non-Display Period Register (VNDR)

Bit	Description	Default	Access
7-0	Vertical Non-Display Period REG[1Ch] mapping to VNDR [7:0] REG[1Dh] bit[1:0] mapping to VNDR [9:8], REG[1Dh] bit[7:2] are not used. The formula is as follows: Vertical Non-Display Period (Line)= (VNDR + 1)	15h	RW

REG[1Eh] VSYNC Start Position Register (VSTR)

Bit	Description	Default	Access
7-0	VSYNC Start Position The starting position from the end of display area to the beginning of VSYNC. VSYNC Start Position (Line)= (VSTR + 1)	0Bh	RW

REG[1Fh] VSYNC Pulse Width Register (VPWR)

Bit	Description	Default	Access
7-6	NA	0	RO
5-0	VSYNC Pulse Width VSYNC Pulse Width (Line)= (VPWR + 1)	0	RW

REG[23h-20h] Main Image Start Address (MISA)

Bit	Description	Default	Access
7-0	Main Image Start Address REG[20h] mapping to MISA[7:0], bit[1:0] must be 0. REG[21h] mapping to MISA[15:8] REG[22h] mapping to MISA[23:16] REG[23h] mapping to MISA[31:24]	0	RW

REG[25h-24h] Main Image Width (MIW)

Bit	Description	Default	Access
7-0	Main Image WidthREG[24h] mapping to MIW[7:0], bit[1:0] must be 0.REG[25h] bit[4:0] mapping to MIW[12:8], bit[7:5] are not usedThe unit is pixel, which is the pixel that represents the horizontal width of the actual LCD. The maximum setting is 8,192 pixels.	0	RW

REG[27h-26h] Main Window Upper-Left Corner X-Coordinates (MWULX)

Bit	Description	Default	Access
7-0	 Main Window Upper-Left Corner X-Coordinates REG[26h] mapping to MWULX[7:0], bit[1:0] must be 0. REG[27h] bit[4:0] mapping to MWULX [12:8], bit[7:5] are not used. The Unit is pixel. The sum of X-Coordinates plus Horizontal Display Width cannot be greater than 8,191. 	0	RW

REG[29h-28h] Main Window Upper-Left corner Y-Coordinates (MWULY)

Bit	Description	Default	Access
7-0	Main Window Upper-Left Corner Y-CoordinatesREG[28h] mapping to MWULY[7:0]REG[29h] bit[4:0] mapping to MWULY [12:8], bit[7:5] are notused.Unit: Pixel. Range is between 0 and 8,191.	0	RW

REG[2Bh-2Ah] PIP Window 1 or 2 Display Upper-Left Corner X-Coordinates (PWDULX)

Bit	Description	Default	Access
7-0	 PIP Window Display Upper-Left Corner X-Coordinates REG[2Ah] mapping to PWDULX[7:0], bit[1:0] must be 0. REG[2Bh] bit[4:0] mapping to PWDULX[12:8], bit[7:5] are not used. Unit: Pixel. Y-axis coordinates should less than vertical display height. According to bit of Select Configure PIP 1 or 2 Window"s parameters(REG[10h]), value will be configured for relative PIP window. 	0	RW

REG[2Dh-2Ch] PIP Window 1 or 2 Display Upper-Left corner Y-Coordinates (PWDULY)

Bit	Description	Default	Access
7-0	 PIP Window Display Upper-Left Corner Y-Coordinates REG[2Ch] mapping to PWDULX[7:0] REG[2Dh] bit[4:0] mapping to PWDULX[12:8], bit[7:5] are not used. Y-axis coordinates should less than vertical display height. According to bit of Select Configure PIP 1 or 2 Window"s parameters(REG[10h]), value will be configured for relative PIP window. 	0	RW

REG[31h-2Eh] PIP Image 1 or 2 Start Address (PISA)

Bit	Description	Default	Access
7-0	PIP Image Start Address REG[2Eh] mapping to PISA[7:0], bit[1:0] must be 0. REG[2Fh] mapping to PISA [15:8] REG[30h] mapping to PISA [23:16] REG[31h] mapping to PISA [31:24] According to bit of Select Configure PIP 1 or 2 Window"s parameters. Function bit will be configured for relative PIP window.	0	RW

REG[33h-32h] PIP Image 1 or 2 Width (PIW)

Bit	Description	Default	Access
7-0	 PIP Image Width REG[32h] mapping to PIW[7:0], bit[1:0] must be 0. REG[33h] bit[5:0] mapping to PIW[13:8], bit[7:6] are not used. Unit: Pixel. The value is physical width, and maximum value is 8192 pixels. This width should less than horizontal display width. According to bit of Select Configure PIP 1 or 2 Window"s parameters, value will be configured for relative PIP window.	0	RW

REG[35h-34h] PIP Window Image 1 or 2 Upper-Left Corner X-Coordinates (PWIULX)

Bit	Description	Default	Access
7-0	 PIP Window 1 or 2 Image Upper-Left Corner X-Coordinates REG[34h] mapping to PWIULX[7:0], bit[1:0] must be 0. REG[35h] bit[4:0] mapping to PWIULX[12:8], bit[7:5] are not used. Unit: Pixel. The sum of X-axis coordinates plus PIP image width must less or equal to 8,191. 	0	RW

REG[37h-36h] PIP Window Image 1 or 2 Upper-Left Corner Y-Coordinates (PWIULY)

Bit	Description	Default	Access
7-0	 PIP Windows Display Upper-Left Corner Y-Coordinates REG[36h] mapping to PWIULY[7:0], bit[1:0] must be 0. REG[37h] bit[4:0] mapping to PWIULY[12:8], bit[7:5] are not used. Unit: Pixel. The sum of Y-axis coordinates plus PIP window height should less or equal to 8,191. 	0	RW

REG[39h-38h] PIP Window 1 or 2 Width (PWW)

Bit	Description	Default	Access
7-0	PIP Window Width REG[38h] mapping to PWW[7:0], bit[1:0] must be 0. REG[39h] bit[5:0] mapping to PWW[13:8], bit[7:6] are not used. Unit: Pixel. Maximum value is 8,192 pixels.	0	RW

REG[3Bh-3Ah] PIP Window 1 or 2 Height (PWH)

Bit	Description	Default	Access
7-0	 PIP Window Height REG[3Ah] mapping to PWH[7:0], bit[1:0] must be 0. REG[3Bh] bit[5:0] mapping to PWH[13:8], bit[7:6] are not used. Unit: Pixel. The value is physical pixel number and maximum value is 8,192 pixels. 	0	RW

Note 1: Pip Window Size and Starting Position in the horizontal direction is 8 pixels, the vertical resolution is 1 line.

Note 2: The above registers REG[20h] ~ REG[3Bh] need to be written in turn by LSB to MSB. Suppose we need to set the Main Image Start Address, this relative register are REG[20h] to REG[23h]. Then Host must write Address data in turn from LSB (REG[20h]) to MSB (REG[23h]). When REG[23h] was written, LT7680 will write complete Main Image Start Address to the internal register in actually.

REG[3Ch] Graphic / Text Cursor Control Register (GTCCR)

Bit	Description	Default	Access
7	Gamma Correction Enable 0: Disable 1: Enable Gamma correction is the last output stage.	0	RW
6-5	Gamma Table Select for Host Write Gamma Data 00b: Gamma table for Blue 01b: Gamma table for Green 10b: Gamma table for Red 11b: NA	0	RW
4	Graphic Cursor Enable 0: Graphic Cursor Disable 1: Graphic Cursor Enable Graphic cursor will auto disable if VDIR (REG[12h] bit3) set as "1".	0	RW
3-2	Graphic Cursor Selection Select one from four graphic cursor types. (00b to 11b) 00b: Graphic Cursor Set 1 01b: Graphic Cursor Set 2 10b: Graphic Cursor Set 3 11b: Graphic Cursor Set 4	0	RW
1	Text Cursor Enable0: Disable1: EnableNote: Text cursor & Graphic cursor cannot enablesimultaneously. Graphic cursor has higher priority than Textcursor if enabled simultaneously.	0	RW

LT7680_DS_ENG / V2.0

Bit	Description	Default	Access
	Text Cursor Blinking Enable		
0	0: Disable	0	RW
	1: Enable		

REG[3Dh] Blink Time Control Register (BTCR)

Bit	Description	Default	Access
7-0	Text Cursor Blink Time Setting 00h: 1 Frame Cycle Time 01h: 2 Frames Cycle Time 02h: 3 Frames Cycle Time : FFh: 256 frames Cycle Time	0	RW

REG[3Eh] Text Cursor Horizontal Size Register (CURHS)

Bit	Description	Default	Access
7-5	NA	0	RO
	Text Cursor Horizontal Size Setting		
4-0	00000b: 1 Pixel		
	00001b: 2 Pixels		
	:	07h	RW
	:		
	11111b: 32 Pixels		
	Note: When character is enlarged, the cursor setting will multiply the same times as the character enlargement.		

REG[3Fh] Text Cursor Vertical Size Register (CURVS)

Bit	Description	Default	Access
7-5	NA	0	RO
4-0	Text Cursor Vertical Size Setting Unit: Pixel, Zero-based number. Value "0" means 1 pixel. Note: When character is enlarged, the cursor setting will multiply the same times as the character enlargement.	0	RW

REG[40h-41h] Graphic Cursor Horizontal Position Register (GCHP)

Bit	Description	Default	Access
	Graphic Cursor Horizontal Position		
7-0	REG[40h] mapping to GCHP[7:0] REG[41h] bit[4:0] mapping to GCHP[12:8], bit[7:5] are not used.	0	RW

REG[42h-43h] Graphic Cursor Vertical Position Register (GCVP)

Bit	Description	Default	Access
7-0	Graphic Cursor Vertical Position REG[42h] mapping to GCVP[7:0] REG[43h] bit[4:0] mapping to GCVP[12:8], bit[7:5] are not used.	0	RW

REG[44h] Graphic Cursor Color 0 (GCC0)

Bit	Description	Default	Access
7-0	Graphic Cursor Color 0 with 256 Colors	0	
	RGB Format [7:0] = RRRGGGBB		RW

REG[45h] Graphic Cursor Color 1 (GCC1)

Bit	Description	Default	Access
7-0	Graphic Cursor Color 1 with 256 Colors	0	RW
	RGB Format [7:0] = RRRGGGBB		

13.6 Geometric Engine Control Registers

REG[53h-50h] Canvas Start Address (CVSSA)

Bit	Description	Default	Access
7-0	Start Address of Canvas REG[50h] mapping to CVSSA[7:0], bit[1:0] must be 0. REG[51h] mapping to CVSSA[15:8] REG[52h] mapping to CVSSA[23:16] REG[53h] mapping to CVSSA[31:24] These Registers will be ignored if canvas in linear Addressing mode.	0	RW

REG[55h-54h] Canvas Image Width (CVS_IMWTH)

Bit	Description	Default	Access
7-0	Canvas Image Width REG[54h] mapping to CVS_IMWTH[7:0], bit[1:0] must be 0. REG[55h] bit[5:0] mapping to CVS_IMWTH[13:8], bit[7:6] are not used. Width = Real Image Width These Registers will be ignored if canvas in linear Addressing mode.	0	RW

Note: The unit of REG[54h] ~ REG[5Dh] are Pixel.

REG[57h-56h] Active Window Upper-Left Corner X-Coordinates (AWUL_X)

Bit	Description	Default	Access
7-0	 Active Window Upper-Left Corner X-Coordinates REG[56h] mapping to AWUL_X[7:0] REG[57h] bit[4:0] mapping to AWUL_X[12:8], bit[7:5] are not used. Unit: Pixel. The sum of X-axis coordinates plus Active Window width cannot large than 8,191. These Registers will be ignored if canvas in linear Addressing mode. 	0	RW

REG[59h-58h] Active Window Upper-Left Corner Y-Coordinates (AWUL_Y)

Bit	Description	Default	Access
7-0	 Active Window Upper-Left Corner Y-Coordinates REG[58h] mapping to AWUL_Y[7:0] REG[59h] bit[4:0] mapping to AWUL_Y[12:8], bit[7:5] are not used. Unit: Pixel. The sum of Y-axis coordinates plus Active Window height cannot large than 8,191. These Registers will be ignored if canvas in linear Addressing mode. 	0	RW

REG[5Bh-5Ah] Active Window Width (AW_WTH)

Bit	Description	Default	Access
7-0	 Active Window Width [13:8] REG[5Ah] mapping to AW_WTH[7:0] REG[5Bh] bit[5:0] mapping to AW_WTH[13:8], bit[7:6] are not used. Unit: Pixel. The value is physical pixel width. Maximum pixel width is 8,192. These Registers will be ignored if canvas in linear Addressing mode. 	0	RW

REG[5Dh-5Ch] Active Window Height (AW_HT)

Bit	Description	Default	Access
7-0	 Height of Active Window [13:8] REG[5Ch] mapping to AW_HT[7:0] REG[5Dh] bit[5:0] mapping to AW_HT[13:8], bit[7:6] are not used. Unit: Pixel. The value is physical pixel width. Maximum pixel width is 8,192. These Registers will be ignored if canvas in linear Addressing mode. 	0	RW

Bit	Description	Default	Access
7-4	NA	0	RO
3	Select What will Read Back from Graphic Read/Write Position Register 0: Read back Graphic Write position 1: Read back Graphic Read position (Pre-fetch Address)	0	RW
2	Canvas Addressing Mode 0: Block mode (X-Y coordinates addressing) 1: Linear mode	0	RW
1-0	Canvas Image's Color Depth & Memory R/W Data Width In Block Mode: 00b: 8bpp 01b: 16bpp 1xb: 24bpp Note: Monochrome data can input with any one color depth depends on proper image width. In Linear Mode: X0: 8-bits memory data read/write. X1: 16-bits memory data read/write	0	RW

REG[5Eh] Color Depth of Canvas & Active Window (AW_COLOR)

Note: Please refer to Figure 5-2 Canvas and Active Windows.

REG[60h-5Fh] Graphic Read/Write X-Coordinate Register (CURH)

Bit	Description	Default	Access
	Write: Set Graphic Read/Write X-Coordinate position Read: Read Graphic Read/Write X-Coordinate position		
	Read back is Read position or Write position depends on REG[5Eh] bit3, Select to read back Graphic Read/Write position.		
	REG[5Fh] mapping to CURH[7:0]		
7-0	REG[60h] bit[4:0] mapping to CURH[12:8], bit[7:5] are not used.	0	RW
	When DPRAM in Linear mode: Memory Read/Write address [15:0], Unit: Byte.		
	When DPRAM in Block mode: Graphic Read/Write X-Coordinate [12:0], Unit: Pixel.		

Note: Host should program proper active window related parameters before configure this register.

REG[62h-61h] Graphic Read/Write Y-Coordinate Register (CURV)

Bit	Description	Default	Access
7-0	 Write: Set Graphic Read/Write X-Coordinate position Read: Read Graphic Read/Write X-Coordinate position Read back is Read position or Write position depends on REG[5Eh] bit3, Select to read back Graphic Read/Write position. REG[61h] mapping to CURV[7:0] REG[62h] bit[4:0] mapping to CURV[12:8], bit[7:5] are not used. When DPRAM In Linear Mode: Memory Read/Write address [31:16], Unit: Byte. When DPRAM In Block Mode: Graphic Read/Write Y-Coordinate [12:0], Unit: Pixel. 	0	RW

Note: Host should program proper active window related parameters before configure this register.

REG[64h-63h] Text Write X-Coordinates Register (F_CURX)

Bit	Description	Default	Access
7-0	Text Write X-coordinates F_CURX[12:0] REG[63h] mapping to F_CURX[7:0] REG[64h] bit[4:0] mapping to F_CURX[12:8], bit[7:5] are not used. Write: Set Text Write X-Coordinates position Read: Current Text Write X-Coordinates position	0	RW

REG[66h-65h] Text Write Y-Coordinates Register (F_CURY)

	Description	Default	Access
7-0 W	ext Write Y-coordinates F_CURY[12:0] REG[65h] mapping to F_CURY[7:0] REG[66h] bit[4:0] mapping to F_CUR[12:8], bit[7:5] are not used. Write: Set Text Write Y-Coordinates position Read: Current Text Write Y-Coordinates position	0	RW

REG[67h] Draw Line/Triangle Control Register 0 (DCR0)

Bit	Description	Default	Access
7	Draw Line / Triangle Start Control Write: 0: Stop the drawing function. 1: Start the drawing function. Read: 0: Drawing function complete. 1: Drawing function is processing.	0	RW
6	NA	0	RO
5	Fill Function for Triangle 0: Non Fill 1: Fill	0	RW
4-1	Draw Triangle or Line Select 0000b: Draw Line 0001b: Draw Triangle 0010b: Rectangle 0011b: Quadrilateral 0100b: Pentagon 0101b: Polyline (3EP) 0110b: Polyline (4EP) 0111b: Polyline (5EP) 1000b: Ellipse 1001b: Rounded-Rectangle 1010b, 1011b: NA 1100b: Oval Arc on upper-right /1st Quadrant 1101b: Oval Arc on upper-left / 2nd Quadrant 1110b: Oval Arc on Lower-Left / 3rd Quadrant 1111b: Oval Arc on Lower-Right / 4th Quadrant	0	RW
0	Polyline Style 0: Open-end Polyline, 1: Closed Polyline (connect last point to start point)	0	RO

REG[69h-68h] Draw Line/Rectangle/Triangle Point 1 X-Coordinates Register (DLHSR)

Bit	Description	Default	Access
7-0	Draw Line/Triangle Point 1 X-coordinates DLHSR[12:0] REG[68h] mapping to DLHSR[7:0] REG[69h] bit[4:0] mapping to DLHSR[12:8], bit[7:5] are not used. Unit: Pixel. When draw a rectangle, start point & end point cannot locate at same point or at same X- Coordinates or Y- Coordinates.	0	RW

REG[6Bh-6Ah] Draw Line/Rectangle/Triangle Point 1 Y-Coordinates Register (DLVSR)

Bit	Description	Default	Access
7-0	Draw Line/Triangle Point 1 Y-coordinates DLVSR[12:0] REG[6Ah] mapping to DLVSR[7:0] REG[6Bh] bit[4:0] mapping to DLVSR[12:8], bit[7:5] are not used.	0	RW

REG[6Dh-6Ch] Draw Line/Rectangle/Triangle Point 2 X-Coordinates Register (DLHER)

Bit	Description	Default	Access
7-0	Draw Line/Triangle Point 2 X-coordinates DLHER[12:0] REG[6Ch] mapping to DLHER[7:0] REG[6Dh] bit[4:0] mapping to DLHER[12:8], bit[7:5] are not used.	0	RW

REG[6Fh-6Eh] Draw Line/Rectangle/Triangle Point 2 Y-Coordinates Register (DLVER)

Bit	Description	Default	Access
7-0	Draw Line/Triangle Point 2 Y-coordinates DLVER[12:0] REG[6Eh] mapping to DLVER[7:0] REG[6Fh] bit[4:0] mapping to DLVER[12:8], bit[7:5] are not used.	0	RW

REG[71h-70h] Draw Triangle Point 3 X-Coordinates Register (DTPH)

Bit	Description	Default	Access
7-0	Draw Line/Triangle Point 3 X-coordinates DTPH[12:0] REG[70h] mapping to DTPH[7:0] REG[71h] bit[4:0] mapping to DTPH[12:8], bit[7:5] are not used.	0	RW

REG[73h-72h] Draw Triangle Point 3 Y-Coordinates Register (DTPV)

Bit	Description	Default	Access
7-0	Draw Line/Triangle Point 3 Y-coordinates DTPV[12:0] REG[72h] mapping to DTPV[7:0] REG[73h] bit[4:0] mapping to DTPV[12:8], bit[7:5] are not used.	0	RW

Note: When Drawing triangle: If any two endpoints overlap will draw a line. And three endpoints overlap will draw a dot.

Bit	Description	Default	Access
7	Draw Circle / Ellipse / Square /Circle Square Control Write: 0: Stop the drawing function. 1: Start the drawing function. Read: 0: Drawing function complete. 1: Drawing function is processing.	0	RW
6	Fill the Circle / Ellipse / Square / Rounded-rectangle Control 0: Non Fill 1: Fill	0	RW
5-4	Draw Circle / Ellipse / Square / Ellipse Curve / Rounded-rectangle Select 00b: Draw Circle / Ellipse 01b: Draw Arc 10b: Draw Rectangle 11b: Draw Rounded-Rectangle	0	RW
3-2	NA	0	RO
1-0	Draw Circle / Ellipse Curve Part Select (DECP) 00b: bottom-left Ellipse Curve 01b: upper-left Ellipse Curve 10b: upper-right Ellipse Curve 11b: bottom-right Ellipse Curve	0	RW

REG[76h] Draw Circle/Ellipse/Ellipse Curve/Circle Square Control Register 1 (DCR1)

REG[78h-77h] Draw Circle/Ellipse/Rounded-Rectangle Major-Radius Register (ELL_A)

Bit	Description	Default	Access
7-0	Draw Circle/Ellipse/Rounded-rectangle Major-Radius		
	REG[77h] mapping to ELL_A[7:0]		
	REG[78h] bit[4:0] mapping to ELL_A[12:8], bit[7:5] are not used.	0	RW
	If draw a circle, then must set major radius equal to minor radius (ELL_A = ELL_B).		

REG[7Ah-79h] Draw Circle/Ellipse/Rounded-rectangle Minor-Radius Register (ELL_B)

Bit	Description	Default	Access
7-0	Draw Circle/Ellipse/Rounded-rectangle Minor-Radius REG[79h] mapping to ELL_B[7:0] REG[7Ah] bit[4:0] mapping to ELL_B[12:8], bit[7:5] are not used.	0	RW

REG[7Ch-7Bh] Draw Circle/Ellipse/Rounded-Rectangle Center X-Coordinates Register (DEHR)

Bit	Description	Default	Access
7-0	Draw Circle/Ellipse/Rounded-rectangle Center X-coordinates REG[7Bh] mapping to DEHR[7:0] REG[7Ch] bit[4:0] mapping to DEHR[12:8], bit[7:5] are not used.	0	RW

REG[7Eh-7Dh] Draw Circle/Ellipse/Rounded-Rectangle Center Y-Coordinates Register (DEVR)

Bit	Description	Default	Access
7-0	Draw Circle/Ellipse/Rounded-rectangle Center Y-coordinates REG[7Dh] mapping to DEVR[7:0] REG[7Eh] bit[4:0] mapping to DEVR[12:8], bit[7:5] are not used.	0	RW

Note: The unit of REG[77h] ~ REG[7Eh] is Pixel.

REG[D2h] Foreground Color Register - Red (FGCR)

Bit	Description	Default	Access
7-0	Foreground Color – Red (for Draw, Text or Color Expansion) 256 Colors: Red mapping to bit[7:5] 65K Colors: Red mapping to bit[7:3] 16.7M Colors: Red mapping to bit[7:0	FFh	RW

REG[D3h] Foreground Color Register - Green (FGCG)

Bit	Description	Default	Access
7-0	Foreground Color – Green (for Draw, Text or Color Expansion)	FFh	RW
	256 Colors: Green mapping to bit[7:5]		
	65K Colors: Green mapping to bit[7:2]		
	16.7M Colors: Green mapping to bit[7:0]		

REG[D4h] Foreground Color Register - Blue (FGCB)

Bit	Description	Default	Access
7-0	 Foreground Color - Blue (for Draw, Text or Color Expansion) 256 Colors: Blue mapping to bit[7:6] 65K Colors: Blue mapping to bit[7:3] 16.7M Colors: Blue mapping to bit[7:0] 	FFh	RW

Note: For Background color setting, please refer to the Text Engine Registers REG[D5h–D7h].

13.7 PWM Control Registers

REG[84h] PWM Prescaler Register (PSCLR)

Bit	Description	Default	Access
7-0	PWM Pre-scaler Register This register determine the pre-scaler value for Timer 0 and 1. The Base Frequency is: Core_Freq / (Prescaler + 1)	0	RW

REG[85h] PWM Clock Mux Register (PMUXR)

Bit	Description	Default	Access
7-6	Setup PWM Timer-1 Divisor (Select 2 nd Clock Divider"s MUX Input for PWM Timer-1) 00b = 1 01b = 1/2 10b = 1/4 11b = 1/8	0	RW
5-4	Setup PWM Timer-0 Divisor (Select 2 nd Clock Divider"s MUX Input for PWM Timer-0) 00b = 1 01b = 1/2 10b = 1/4 11b = 1/8	0	RW
3-2	 PWM[1] Function Control 0xb: PWM[1] output system error flag (Scan FIFO POP error or Memory access out of range) 10b: PWM[1] output PWM timer 1 event or invert of PWM timer 0 11b: PWM[1] output Oscillator Clock 	0	RW
1-0	PWM[0] Function Control 0xb: PWM[0] becomes GPIOC[7] 10b: PWM[0] output PWM Timer 0 11b: PWM[0] output Core Clock (CCLK).	0	RW

REG[86h] PWM Configuration Register (PCFGR)

Bit	Description	Default	Access
7	NA	0	RO
6	PWM Timer-1 Output Inverter On/Off Determine the output inverter on/off for Timer 1. 0 = Inverter off 1 = Inverter on for PWM1	0	RW
5	PWM Timer-1 Auto Reload On/Off Determine auto reload on/off for Timer 1. 0: One-Shot Mode 1: Interval Mode (Auto Reload)	1	RW
4	 PWM Timer-1 Start/Stop 0: Stop 1: Start In Interval Mode, Host need program it as 0 to stop PWM timer. In One-shot Mode, this bit will auto clear. The Host may read this bit to know current PWMx is running or stopped. 	0	RW
3	PWM Timer-0 Dead Zone Enable 0: Disable 1: Enable	0	RW
2	PWM Timer-0 Output Inverter On/Off Determine the output inverter on/off for Timer 0. 0 = Inverter off 1 = Inverter on for PWM0	0	RW
1	PWM Timer-0 Auto Reload On/Off Determine auto reload on/off for Timer 0. 0: One-Shot Mode 1: Interval Mode (Auto Reload)	1	RW
0	 PWM Timer-0 Start/Stop 0: Stop 1: Start In Interval Mode, Host need program it as 0 to stop PWM timer. In One-shot Mode, this bit will auto clear. The Host may read this bit to know current PWMx is running or stopped. 	0	RW

REG[87h] Timer-0 Dead Zone Length Register [DZ_LENGTH]

Bit	Description		Access
7-0	Timer-0 Dead Zone Length Register These 8 bits determine the dead zone length. The 1 unit time of the dead zone length is equal to Timer 0.	0	RW

LT7680_DS_ENG / V2.0

REG[88h-89h] Timer-0 Compare Buffer Register [TCMPB0]

Bit	Description	Default	Access
7-0	Timer-0 compare Buffer Register REG[88h] mapping to TCMPB0 [7:0] REG[89h] mapping to TCMPB0 [15:8] The Timer-0 Compare Buffer Register have a total of 16bits. When the counter is equal to or less than the value of this register, and if INV_ON bit is Off, then PWM1 output is high level.	0	RW

REG[8Ah-8Bh] Timer-0 Count Buffer Register [TCNTB0]

Bit	Description	Default	Access
7-0	Timer-0 Count Buffer Register [15:0] REG[8Ah] mapping to TCNTB0 [7:0] REG[8Bh] mapping to TCNTB0 [15:8] The Timer-0 count registers have a total of 16bit. When the counter down to 0 and the Reload_EN is enabled, the PWM will overloads the value of this register to the counter. When the PWM begins to count, the current count value can be read back through this register.	0	RW

REG[8Ch-8Dh] Timer-1 Compare Buffer Register [TCMPB1]

Bit	Description	Default	Access
	Timer-1 Compare Buffer Register		
	REG[8Ch] mapping to TCMPB1 [7:0]		
7-0	REG[8Dh] mapping to TCMPB1 [15:8]	0	RW
7-0	The Timer-1 Compare Buffer Register have a total of 16bits. When the counter is equal to or less than the value of this register, and if INV_ON bit is Off, then PWM1 output is high level.		

REG[8Eh-8Fh] Timer-1 Count Buffer Register [TCNTB1]

Bit	Description	Default	Access
	Timer-1 Count Buffer Register [15:0] REG[8Eh] mapping to TCNTB1 [7:0] REG[8Fh] mapping to TCNTB1 [15:8]		
7-0	The Timer-1 count registers have a total of 16bit. When the counter down to 0 and the Reload_EN is enabled, the PWM will overloads the value of this register to the counter. When the PWM begins to count, the current count value can be read back through this register.	0	RW

13.8 Bit Block Transfer Engine (BTE) Control Registers

REG[90h] BTE Function Control Register 0 (BLT_CTRL0)

Bit	Description	Default	Access
7-5	NA	0	RO
4	BTE Function Enable / Status <i>Write:</i> 0: No Action 1: BTE Enable <i>Read:</i> 0: BTE function is idle. 1: BTE function is busy. When BTE function enable, Normal Host R/W memory through canvas[active window] doesn"t allow.	0	RW
3-1	NA	0	RO
0	Pattern Format 0: 8*8 1: 16*16	0	RW

LT7680_DS_ENG / V2.0

REG[91h] BTE Function Control Register1 (BLT_CTRL1)

Bit	Description				Default	Access
	ROP is th	he acror code ha	Color Expansion Starting nym for Raster Operation. Some o is to collocate with ROP for the o able 13-3: BTE ROP Code			
	В	Bit[7:4]	Description			
	C	0000b	0 (Blackness)			
	C	0001b	~S0 · ~S1 or ~ (S0+S1)			
	C	0010b	~S0 · S1			
	C	0011b	~S0			
	C	0100b	S0 · ~S1			
	C	0101b	~S1			
	C	0110b	S0^S1			
7-4	C	0111b	~S0+~S1 or ~ (S0 · S1)		0	RW
	1	1000b	S0 · S1			
	1	1001b	~ (S0^S1)			
	1	1010b	S1			
	1	1011b	~S0+S1			
	1	1100b	S0			
	1	1101b	S0+~S1			
	1	1110b	S0+S1			
	1	1111b	1 (Whiteness)			
	If BTE operation code function are color expansion with or without chroma key (08h / 09h / Eh / Fh), then these bits stand for starting bit on BTE window left boundary. MSB stands for left most pixel. For 8-bits Host, value should within 0 to 7. For 16-bits Host, value should within 0 to 15.					
3-0	BTE Operation Code bit[3:0] LT7680 embedded a 2D BTE Engine, it can execute 13 BTE functions. Some of BTE Operation Code has to accommodate with the ROP code for the advance function.		0	RW		

DEC[04b]					
REG[91h] Bit[3:0]	Description				
0000b	MCU Write with ROP S0: Data comes from Host S1: Data comes from Memory D: According to ROP write to Memory				
0001b	Reserved				
0010b	Memory Copy with ROP S0: Data comes from Memory S1: Data comes from Memory D: According to ROP Write to memory				
0011b	Reserved				
0100b	MCU Write with Chroma Keying (without ROP) S0: Data comes from Host If the Host data is not the same color as the Chroma Key (Background Color Register), the data is written to the destination memory.				
0101b	Memory Copy (move) with Chroma keying (without ROP) S0: Data comes from Memory If the S0 data is not the same color as the chroma key Background Color Register), the data is written to the destination.				
0110b	Pattern Fill with ROP Pattern was specified by S0.				
0111b	Pattern Fill with Chroma Keying Pattern was specified by S0. If the data for S0 is not the same as the Chroma Key (Background Color) color, then it is written to the destination memory.				
1000b	MCU Write with Color Expansion S0: Data comes from Host BTE converts it to the specified color and color depth and writes to the destination memory.				
1001b	MCU Write with Color Expansion and Chroma Keying The monochrome data required by S0 is written by MCU if the bit of monochrome data is 1. The processed data is a foreground color, and if the monochrome data is 0, it is not written. The data is also referenced in the destination memory setting.				
1010b	Memory Copy with Opacity S0, S1 & D: Data come from Memory				

Table 13-4: BTE Operation Code

REG[91h] Bit[3:0]	Description
	MCU Write with Opacity
	S0: Data comes from Host
1011b	S1: Data comes from Memory
	D: Refer to the alpha blending operation and write to the destination memory.
	Solid Fill
1100b	The write value is a register setting value and the target is written to the destination memory.
1101b	Reserved
	Memory Copy with Color Expansion
	S0 and D are in memory and S1 is not in use.
1110b	S0 must be loaded with the microprocessor's write or DMA preload 8bpp or 16bpp of color depth into memory, so the S0 color depth should follow that color depth.
	Memory Copy with Color Expansion and Chroma Keying
	S0 and D are in memory and S1 is not in use.
1111b	S0 must be loaded with the microprocessor's write or DMA preload 8bpp or 16bpp of color depth into memory, so the S0 color depth should follow that color depth.
	If the S0 data bit = 0, then D is not written to any data. If the S0 data bit = 1, the Foreground Color data will be written to D.

Table 13-4: BTE Operation Code (Continued)

REG[92h] Source 0/1 & Destination Color Depth (BLT_COLR)

Bit	Description	Default	Access
7	NA	0	RO
6-5	S0 Color Depth 00b: 256 Color (8bpp) 01b: 64k Color (16bpp) 1xb: 16M Color (24bpp)	0	RW
4-2	S1 Color Depth 000b: 256 Color (8bpp) 001b: 64k Color (16bpp) 010b: 16M Color (24bpp) 011b: Constant color (S1 memory start address" setting definition change as S1 constant color definition) 100b: 8 bit pixel alpha blending 101b: 16 bit pixel alpha blending	0	RW

Bit	Description	Default	Access
1-0	Destination Color Depth	0	RW
	00b: 256 Color (8bpp)		
	01b: 64k Color (16bpp)		
	1xb: 16M Color (24bpp)		

REG[93h-96h] Source 0 Memory Start Address (S0_STR)

Bit	Description	Default	Access
7-0	Source 0 Memory Start Address [31:2] REG[93h] mapping to S0_STR [7:2] REG[94h] mapping to S0_STR [15:8] REG[95h] mapping to S0_STR [23:16] REG[96h] mapping to S0_STR [31:24] Note: REG[93h] bit[1:0] fix at 0.	0	RW

REG[97h-98h] Source 0 Image Width (S0_WTH)

Bit	Description	Default	Access
7-0	 Source 0 Image Width [12:2] REG[97h] mapping to S0_WTH [7:2] REG[98h] bit[4:0] mapping to S0_WTH [12:8], bit[7-5] are not used. Note: It must be divisible by 4, and REG[97h] bit[1:0] must fix at 0. Unit: Pixel. 	0	RW

REG[99h-9Ah] Source 0 Window Upper-Left Corner X-Coordinates (S0_X)

Bit	Description	Default	Access
7-0	Source 0 Window Upper-Left Corner X-Coordinates [12:0] REG[99h] mapping to S0_X [7:0] REG[9Ah] bit[4:0] mapping to S0_X [12:8], bit[7-5] are not used.	0	RW

REG[9Bh-9Ch] Source 0 Window Upper-Left corner Y-Coordinates (S0_Y)

Bit	Description	Default	Access
7-0	Source 0 Window Upper-Left Corner Y-Coordinates [12:0] REG[9Bh] mapping to S0_Y [7:0] REG[9Ch] bit[4:0] mapping to S0_Y[12:8], bit[7-5] are not used.	0	RW

REG[9Dh-A0h] Source 1 Memory Start Address 0 (S1_STR)

Bit	Description	Default	Access
	Source 1 Memory Start Address [31:2]		
	REG[9Dh] bit[7:2] mapping to S1_STR[7:2]		
	REG[9Eh] mapping to S1_STR[15:8]	0	
	REG[9Fh] mapping to S1_STR[23:16]		
7.0	REG[A0h] mapping to S1_STR[31:24]		RW
7-0	Note1: REG[9Dh] bit[1:0] must fix at 0.		
	Note2: If source 1(S0) set as Constant Color then S1 memory start address [®] setting definition change as S1 constant color definition: REG[9Dh] is RED element (S1_RED), REG[9Eh] is Green element (S1_GREEN), REG[9Fh] is Blue Element (S1_BLUE), REG[A0h] is not used for color definition.		

REG[A1h-A2h] Source 1 Image Width (S1_WTH)

Bit	Description	Default	Access
7-0	 Source 1 Image Width [12:2] REG[A1h] [7:2] mapping to S1_WTH [7:2] REG[A2h] bit[4:0] mapping to S1_WTH[12:8], bit[7:5] are not used. Note: It must be divisible by 4, and REG[A1h] bit[1:0] must fix at 0. Unit: Pixel. 	0	RW

REG[A3h-A4h] Source 1 Window Upper-Left Corner X-Coordinates (S1_X)

Bit	Description	Default	Access
7-0	Source 1 Window Upper-Left Corner X-Coordinates [12:0] REG[A3h] mapping to S1_X [7:0] REG[A4h] bit[4:0] mapping to S1_X [12:8], bit[7:5] are not used.	0	RW

REG[A5h-A6h] Source 1 Window Upper-Left corner Y-Coordinates (S1_Y)

Bit	Description	Default	Access
7-0	Source 1 Window Upper-Left Corner Y-Coordinates [12:0] REG[A5h] mapping to S1_Y [7:0] REG[A6h] bit[4:0] mapping to S1_Y [12:8], bit[7:5] are not used.	0	RW

REG[A7h-AAh] Destination Memory Start Address (DT_STR)

Bit	Description	Default	Access
7-2	Destination Memory Start Address [31:2] REG[A7h] bit[7:2] mapping to DT_STR [7:2] REG[A8h] mapping to DT_STR [15:8] REG[A9h] mapping to DT_STR [23:16] REG[AAh] mapping to DT_STR [31:24] Note: REG[A7h] bit[1:0] must fix at 0.	0	RW

Note: The destination memory start address cannot be in the source 0 and Source 1 processing block, otherwise there will be an incorrect result output.

Start Address ~ S0/1's (Image_Width)* (Image_Height)* ([1|2|3]Color Depth)

REG[ABh-ACh] Destination Image Width (DT_WTH)

Bit	Description	Default	Access
7-0	 Destination Image Width [12:2] REG[ABh] mapping to DT _WTH [7:2] REG[ACh] bit[4:0] mapping to DT _WTH [12:8], REG[ACh] bit[7-5] are not used. Note: It must be divisible by 4. And REG[ABh] bit[1:0] must fix 0. Unit: Pixel. 	0	RW

REG[ADh-AEh] Destination Window Upper-Left Corner X-Coordinates (DT_X)

Bit	Description	Default	Access
7-0	Destination Window Upper-Left Corner X-Coordinates [12:0] REG[ADh] mapping to DT_X [7:0] REG[AEh] bit[4:0] mapping to DT_X [12:8], bit[7-5] are not used.	0	RW

REG[AFh-B0h] Destination Window Upper-Left Corner Y-Coordinates (DT_Y)

Bit	Description	Default	Access
7-0	Destination Window Upper-Left Corner X-Coordinates [12:0] REG[AFh] mapping to DT_Y [7:0] REG[B0h] bit[4:0] mapping to DT_Y [12:8], bit[7-5] are not used.	0	RW

REG[B1h-B2h] BTE Window Width (BLT_WTH)

Bit	Description	Default	Access
7-0	BTE Window Width [12:0]		
	REG[B1h] mapping to BLT_WTH [7:0]		
	REG[B2h] bit[4:0] mapping to BLT_WTH [12:8], bit[7-5] are not used.	0	RW
	When all Image Fill (Pattern Fill) functions for BTE are enabled, the BTE window Width is ignored and automatically set to 8 or 16. Unit: Pixel.		

REG[B3h-B4h] BTE Window Height (BLT_HIG)

Bit	Description	Default	Access
7-0	 Destination Image Height [12:0] REG[B3h] mapping to BLT_HIG [7:0] REG[B4h] bit[4:0] mapping to BLT_HIG [12:8], bit[7-5] are not used. When all Image Fill (Pattern Fill) functions for BTE are enabled, the BTE window Height is ignored and automatically set to 8 or 16. Unit: Pixel. 	0	RW

REG[B5h] Alpha Blending (APB_CTRL)

Bit	Description	Default	Access
7-4	NA	0	RO
5-0	Window Alpha Blending Effect for S0 & S1 The value of alpha in the color code ranges from 1.0 down to 0.0, where 1.0 represents a fully opaque color, and 0.0represents a fully transparent color. 00h: 0 01h: 1/32 02h: 2/32 : 1Eh: 30/32 1Fh: 31/32 2Xh: 1 Output Effect = [S0 image * (1 - Alpha Setting Value)] + (S1 Image * Alpha Setting Value)	0	RW

13.9 Serial Flash & SPI Master Control Registers

REG[B6h] Serial Flash DMA Controller REG (DMA_CTRL)

Bit	Description	Default	Access
7-1	NA	0	RO
0	 Write: DMA Start Bit This bit can be written to 1 via Host, and immediately the circuit will automatically clear to 0. This bit cannot be used with Text Write, so if DMA is enabled, it cannot be set to text mode and input character code. Read: DMA Busy Check Bit 0: Idle 1: Busy The DMA transmission of a Serial Flash must be in Graphics Mode, and first set the canvas destination location, destination width, color depth, and addressing mode in the Display RAM. 	0	RW

REG[B7h] Serial Flash/ROM Controller Register (SFL_CTRL)

Bit	Description	Default	Access
7	Serial Flash/ROM Select 0: Serial Flash/ROM 0 I/F is selected 1: Serial Flash/ROM 1 I/F is selected	0	RW
6	Serial Flash /ROM Access Mode 0: Text Mode, used for CGRAM 1: DMA Mode, used for CGRAM \Pattern \Boot Start Image or OSD.	0	RW
5	Serial Flash/ROM Address Mode 0: 24bits address mode 1: 32bits address mode If user wants to use 32 bits address mode, Host must manual send EX4B command (B7h) to serial flash then set this bit to 1. Host also may check this bit to know whether serial flash had enter 32 bits address mode by initial display function.	0	RW
4	NA	0	RW
3-0	 Read Command Code & Behavior Selection 000xb: 1x Read Command - 03h. Normal Read Speed. Data is read from SFDI. Without dummy cycle between address and data 010xb: 1x Read Command - 0Bh. Faster Read speed. Data is read from SFDI. LT7680 inserted 8 dummy cycles between address and data. 1x0xb: 1x Read Command - 1Bh. Fastest Read Speed. Data read from SFDI. LT7680 inserted 16 dummy cycles between address and data. 	0	R/W

LT7680_DS_ENG / V2.0

Bit	Description	Default	Access
	xx10b: 2x Read Command - 3Bh. Interleaved data input from SFDI and SFDO. LT7680 inserted 8 dummy cycles (Dual Mode 0) between address and data. Refer to Figure 10-8.		
	xx11b: 2x Read Command – BBh. Interleaved data input from SFDI and SFDO. LT7680 inserted 4 dummy cycles (Dual Mode 1) between address and data. Refer to Figure 10-9.		
	Note: Not all of Serial Flash support above read command. Please according to Serial Flash's datasheet to select proper read command.		

REG[B8h] SPI Master Tx /Rx FIFO Data Register (SPIDR)

Bit	Description	Default	Access
7-0	SPI Master Tx /Rx FIFO Data Register After Host programming the LT7680"s control register, SPI transfers can be initiated. A transfer is initiated by writing to the Serial Peripheral Data Register [SPIDR]. Writing to the Serial Peripheral Data Register is actually writing to a 16 entries deep FIFO called the Write FIFO. Each write access adds a data byte to the Write FIFO. When the core is enabled – SS_ACTIVE is set "1" – and the Write FIFO is not full, the core automatically transfers the oldest data byte. Receiving data is done simultaneously with transmitting data; whenever a data byte is transmitted a data byte is received. For each byte that needs to be read from a device, a dummy byte needs to be written to the Write FIFO. This instructs the core to initiate an SPI transfer, simultaneously transmitting the dummy byte and receiving the desired data. Whenever a transfer is finished, the received data byte is added to the Read FIFO. The Read FIFO is the counterpart of the Write FIFO. It is an independent 16 entries deep FIFO. The FIFO contents can be read by reading from the Serial Peripheral Data Register [SPIDR]	NA	RW

REG[B9h] SPI Master Control Register (SPIMCR2)

Bit		Description	•	Default	Access
7	NA			0	RO
6	SPI Master Inte 0: Disable int 1: Enable int If Host disable assert interrupt interrupt event o	0	RW		
5	Control Slave S 0: Slave Sele 1: Slave Sele	0	RW		
4	Slave Select Signal Active [SS_ACTIVE] 0: Inactive (SS# drive High) 1: Active (SS# drive Low) While Slave Select signal in inactive, FIFO will clear and engine will stay in Idle state. Note: Suggest don"t change CPOL/CPHA and active Slave Select signal simultaneously.				RW
3	Mask Interrupt for FIFO Overflow Error [OVFIRQMSK] 0: Unmask. 1: Mask.				RW
2	Mask Interrupt for While Tx FIFO Empty & SPI Engine/FSM Idle [EMTIRQMSK] 0: Unmask. 1: Mask.				RW
1:0			enable serial flash"s DMA. tion Mode CPHA: Clock Phase Bit 0 1 0 1 1	0	RW

■ Please refer to Section 10.2 for SPI Master description.

- When CPOL = 0, SCK is 0 in inactive.
 - _ CPHA = 0: data is read on rising edge (low->high). And data are changed on a falling edge (high->low).

LT7680_DS_ENG / V2.0

- _ CPHA = 1: data is read on falling edge (high->low) . And data are changed on a rising edge (low->high).
- When CPOL = 1, SCK is 1 in inactive (inversion of CPOL = 0)
 - _ CPHA = 0: data is read on falling edge (high->low). And data are changed on a rising edge (low->high).
 - _ CPHA = 1: data is read on rising edge (low->high). And data are changed on a falling edge (high->low).

🗸 LT7680

Bit	Description	Default	Access
7	Tx FIFO Empty Flag 0: Not Empty 1: Empty	1	RO
6	Tx FIFO Full Flag 0: Not Full 1: Full	0	RO
5	Rx FIFO Empty Flag 0: Not empty 1: Empty	1	RO
4	Rx FIFO Full Flag 0: Not Full 1: Full	0	RO
3	Overflow Interrupt Flag Write 1 will clear this flag	0	RW
2	Tx FIFO Empty & SPI Engine/FSM Idle Interrupt Flag Write 1 will clear this flag	0	RW
1-0	NA	0	RO

REG[BBh] SPI Clock period (SPI_DIVSOR)

Bit	Description	Default	Access
7-0	SPI Clock Period According to system clock to set low & high period for SPI clock.	3	RW
	F _{SCK} = F _{CORE} / (Divisor + 1)*2		

REG[BCh-BFh] Serial Flash DMA Source Starting Address (DMA_SSTR)

Bit	Description	Default	Access
	Serial Flash DMA Source Start Address[31:0]		
	REG[BCh] mapping to DMA_SSTR[7:0]		
	REG[BDh] mapping to DMA_SSTR[15:8]		
7-0	REG[BEh] mapping to DMA_SSTR[23:16]	0	RW
	REG[BFh] mapping to DMA_SSTR[31:24]		
	These registers index Serial Flash Address [31:0]. Direct point to exact source image"s transfer starting position.		

REG[C0h-C1h] DMA Destination Window Upper-Left Corner X-Coordinates (DMA_DX)

Bit	Description	Default	Access
7-0	When REG 5Eh (AW_COLOR) bit 2 = 0 (Block Mode): This register defines DMA Destination Window Upper-Left corner X-coordinates [12:0] on Canvas area. REG[C0h] mapping to DMA_DX[7:0] REG[C1h] bit[4:0] mapping to DMA_DX[12:8], bit[7:5] are not used.	0	RW
	When REG 5Eh (AW_COLOR) bit 2 = 1 (Linear Mode): This register defines Destination address [15:2] in Display RAM. REG[C0h] bit[7:2] mapping to DMA_DX[7:2] REG[C1h] mapping to DMA_DX[15:8]		

REG[C2h-C3h] DMA Destination Window Upper-Left Corner Y-Coordinates (DMA_DY)

Bit	Description	Default	Access
7-0	When REG 5Eh (AW_COLOR) bit 2 = 0 (Block Mode): This register defines DMA Destination Window Upper-Left corner Y-coordinates [12:0] on Canvas area. REG[C2h] mapping to DMA_DY[7:0] REG[C3h] bit[4:0] mapping to DMA_DY[12:8], bit[7:5] are not used.	0	RW
	When REG 5Eh (AW_COLOR) bit 2 = 1 (Linear Mode): This register defines Destination address [31:16] in Display RAM. REG[C2h] mapping to DMA_DY[23:16] REG[C3h] mapping to DMA_DY[31:24]		

REG[C4h] – REG[C5h]: Reserved

Bit	Description	Default	Access
7-0	NA	0	RO

REG[C6h-C7h] DMA Block Width (DMAW_WTH)

Bit	Description	Default	Access
	When REG 5Eh (AW_COLOR) bit 2 = 0 (Block Mode): DMA Block Width [15:0]	0	RW
	REG[C6h] mapping to DMAW_WTH[7:0]		
	REG[C7h] mapping to DMAW_WTH[15:8]		
7-0	When REG 5Eh (AW_COLOR) bit 2 = 1 (Linear Mode): DMA Transfer Number [15:0]		
	REG[C6h] mapping to DMAW_WTH[7:0]		
	REG[C7h] mapping to DMAW_WTH[15:8]		

REG[C8h-C9h] DMA Block Height (DMAW_HIGH)

Bit	Description	Default	Access
7-0	When REG 5Eh (AW_COLOR) bit 2 = 0 (Block Mode): DMA Block Height [15:0]	0	RW
	REG[C8h] mapping to DMAW_HIGH[7:0]		
	REG[C9h] mapping to DMAW_HIGH[15:8]		
	When REG 5Eh (AW_COLOR) bit 2 = 1 (Linear Mode): DMA Transfer Number [31:16]		
	REG[C8h] mapping to DMAW_HIGH [23:16]		
	REG[C9h] mapping to DMAW_HIGH [31:24]		

REG[CAh-CBh] DMA Source Picture Width (DMA_SWTH)

Bit	Description	Default	Access
7-0	DMA Source Picture Width [12:0] REG[CAh] mapping to DMA_SWTH[7:0] REG[CBh] bit[4:0] mapping to DMA_SWTH[12:8], bit[7:5] are not used. Unit: Pixel.	0	RW

Please refer to Section 10.3 description of SPI Flash Controller.

13.10 Text Engine Registers

REG[CCh] Character Control Register 0 (CCR0)

Bit	Description	Default	Access
7:6	Character Source Selection 00b: Select internal CGROM Character 01b: Select external CGROM Character 10b: Select user-defined Character. 11b: NA	0	RW
5-4	 Character Height Setting for user-defined Character 00b: 16 dots, ex. 8*16 / 16*16 01b: 24 dots, ex. 12*24 / 24*24 10b: 32 dots, ex. 16*32 / 32*32 Note: 1. User-defined character width is decided by character code; width for code < 8000h is 8/12/16. width for code >=8000h is 16/24/32. 2.Internal CGROM supports size 8*16 / 12*24 / 16*32. 	0	RW
3-2	N	0	RO
1-0	Character Selection for Internal CGROM When bit[7:6] = 00b, Internal CGROM supports character sets with the standard coding of ISO/IEC 8859-1,2,4,5, which supports English and most of European country languages 00b: ISO/IEC 8859-1 01b: ISO/IEC 8859-2 10b: ISO/IEC 8859-4 11b: ISO/IEC 8859-5	0	RW

REG[CDh] Character Control Register 1 (CCR1)

Bit	Description	Default	Access
7	 Full Alignment Selection 0: Full alignment disable 1: Full alignment enable. When Full alignment enable, displayed character width is equal to (Character Height)/2 if character width equal or small than (Character Height)/2, otherwise displayed font width is equal to Character Height. 	0	RW
6	 Chroma Keying Enable on Text Input 0: Character"s background displayed with specified color. 1: Character"s background displayed with original canvas" background. 	0	RW
5	NA	0	RO

LT7680_DS_ENG / V2.0

Bit	Description	Default	Access
	Character Rotation 0: Normal. Text direction from left to right then from top to		
	bottom		
4	1: Counterclockwise 90 degree & vertical flip. Text direction from top to bottom then from left to right (it should accommodate with set VDIR as 1). This attribute can be changed only when previous Text write finished (Core_Busy = 0)	0	RW
	Character Width Enlargement Factor		
	00b: X1.		
3-2	01b: X2.	0	RW
	10b: X3.		
	11b: X4.		
	Character Height Enlargement Factor		
1-0	00b: X1.		
	01b: X2.	0	RW
	10b: X3.		
	11b: X4.		

REG[CEh-CFh] RESERVED

Bit	Description	Default	Access
7-0	NA	0	RO

REG[D0h] Character Line gap Setting Register (FLDR)

Bit	Description	Default	Access
7-5	NA	0	RO
4-0	Character Line Gap Setting Setting the character line gap when meet active window boundary. (Unit: pixel) Color of gap will fill-in background color. It won [®] t be enlarged by character enlargement function.	0	RW

REG[D1h] Character to Character Space Setting Register (F2FSSR)

Bit	Description	Default	Access
7-6	NA	0	RW
5-0	Character to Character Space Setting 00h: 0 pixel 01h: 1 pixel 02h: 2 pixels : 3Fh: 63 pixels Color of space will fill-in background color. It won"t be enlarged by character enlargement function.	0	RW

REG[D2h] Foreground Color Register - Red (FGCR)

Bit	Description	Default	Access
7-0	 Foreground Color – Red (for Draw, Text or Color Expansion) 256 Colors: Red mapping to bit[7:5] 65K Colors: Red mapping to bit[7:3] 16.7M Colors: Red mapping to bit[7:0] 	FFh	RW

REG[D3h] Foreground Color Register - Green (FGCG)

Bit	Description	Default	Access
	Foreground Color – Green (for Draw, Text or Color Expansion)		
7-0	256 Colors: Green mapping to bit[7:5]	FFh	RW
	65K Colors: Green mapping to bit[7:2]		
	16.7M Colors: Green mapping to bit[7:0]		

REG[D4h] Foreground Color Register - Blue (FGCB)

Bit	Description	Default	Access
7-0	 Foreground Color – Blue (for Draw, Text or Color Expansion) 256 Colors: Blue mapping to bit[7:6] 65K Colors: Blue mapping to bit[7:3] 16.7M Colors: Blue mapping to bit[7:0] 	FFh	RW

REG[D5h] Background Color Register - Red (BGCR)

Bit	Description	Default	Access
	Background Color – Red (for Text or Color Expansion)		
	256 Colors: Red mapping to bit[7:5]		
	65K Colors: Red mapping to bit[7:3]		
7-0	16.7M Colors: Red mapping to bit[7:0]	00h	RW
	Note: No matter background transparency is enabled or not, don"t set same value with Foreground Color otherwise image or text will become a square with Foreground Color even BTE function.		

REG[D6h] Background Color Register - Green (BGCG)

Bit	Description	Default	Access
	Background Color – Green (for Text or Color Expansion)		
	256 Colors: Green mapping to bit[7:5]		
	65K Colors: Green mapping to bit[7:2]		
7-0	16.7M Colors: Green mapping to bit[7:0]	00h	RW
	Note: No matter background transparency is enabled or not, don"t set same value with Foreground Color otherwise image or text will become a square with Foreground Color even BTE function.		

REG[D7h] Background Color Register - Blue (BGCB)

Bit	Description	Default	Access
7-0	 Background Color –Blue (for Text or Color Expansion) 256 Colors: Blue mapping to bit[7:6] 65K Colors: Blue mapping to bit[7:3] 16.7M Colors: Blue mapping to bit[7:0] Note: No matter background transparency is enabled or not, don"t set same value with Foreground Color otherwise image or text will become a square with Foreground Color even BTE function. 	00h	RW

REG[D8h] – REG[DAh]: Reserved

Bit	Description	Default	Access
7-0	NA	0	RO

REG[DBh] CGRAM Start Address 0 (CGRAM_STR0)

Bit	Description	Default	Access
7-0	CGRAM Start ADDRESS [7:0] User-defined Characters space REG[DBh] mapping to CGRAM_STR [7:0] REG[DCh] mapping to CGRAM_STR [15:8] REG[DEh] mapping to CGRAM_STR [23:16]	0	RW
	REG[DEh] mapping to CGRAM_STR [31:24] Host must use canvas image setting to organize CGRAM data and set CGRAM address to tell engine where to fetch CGRAM data.		

If user wants to change rotate attribute, character line gap, character-to-character space, foreground color, background color and Text/graphic mode setting, he must make sure Task_Busy (Status Register bit3) status bit is low.

LT7680_DS_ENG / V2.0

13.11 Power Management Control Register

REG[DFh]: Power Management Register (PMU)

Bit	Description	Default	Access
7	 Enter Power Saving State 0: Normal state or wake up from power saving state 1: Enter power saving state. 7 There are 3 ways to wake up from power saving state: External interrupt event, Key Scan wakeup and Software wakeup. Write this bit to 0 will cause Software wakeup. It will be cleared until chip resume. MPU must wait until system quit from power saving state than allow to write other registers. User may check this bit or check status bit1 (power saving) 		RW
6-2	NA	0	RO
1-0	 Power Saving Mode Definition 00b: NA 01b: Standby Mode, CCLK & PCLK will Stop. MCLK is provided by MPLL. 10b: Suspend Mode, CCLK & PCLK will Stop. MCLK is provided by OSC. 11b: Sleep Mode, All of Clocks and PLL will Stop. 	3	RW

13.12 Display RAM Control Register

REG[E0h] SDRAM Attribute Register (SDRAR)

Bit	Description	Default	Access
7	 SDRAM Power Saving 0: Execute power down command to enter power saving mode 1: Execute self refresh command to enter power saving mode 		RW
6	Must keep 0.	0	RW
5	SDRAM Bank Number, SDR_BANK 0: 2 Banks (column addressing size only support 256 words) 1: 4 Banks	1	RW
4-3	SDRAM Row Addressing, SDR_ROW 00b: 2K (A0-A10) 01b: 4K (A0-A11) 1xb: 8K (A0-A12)	1	RW
2-0	SDRAM Column Addressing, SDR_COL 000b: 256 (A0-A7) 001b: 512 (A0-A8) 010b: 1,024 (A0-A9) 011b: 2,048 (A0-A9, A11) 1xxb: 4,096 (A0-A9, A11-A12)	0	RW

Table 13-6: The initialize of REG[E0h]

Model	Embedded Display RAM Type	REG[E0h]	Description
LT7680A-R LT7680B-R	128Mb, 16MB, 8M*16		Bank no: 4, Row Size: 4096, Column Size: 512

Note: The value of register REG[E0h] must be set according to the LT7680 model name. Otherwise, the display of TFT panel will abnormal and the image is garbled.

REG[E1h] SDRAM Mode Register & Extended Mode Register (SDRMD)

Bit	Description		Access
7-3	Must keep 0.	0	RW
2-0	SDRAM CAS latency, SDR_CASLAT 010b: 2 SDRAM clock 011b: 3 SDRAM clock Others: Reserved Note: The suggest setting value of this register is 03h. This register was locked after SDR_INITDONE (REG[E4h] bit0) was set as 1.	011b	RW

REG[E2h-E3h] SDRAM Auto Refresh Interval (SDR_REF)

Bit	Description		Access
	SDRAM Auto Refresh Interval		
	REG[E2h] mapping to SDR_REF [7:0]. REG[E3h] mapping to SDR_REF [15:8]		
7-0	The internal refresh time is determined according to the period specification of the SDRAM's refresh and the row size. For example, if the SDRAM frequency is 100MHz, SDRAM's refresh period Tref is 64ms, and the row size is 4,096, then the internal refresh time should be less than $64*10^{-3}$ / 4096 * $100*10^{6} \sim 1562 = 61Ah$ Therefore the REG[E3h][E2h] is set 030Dh.	00h	RW
	Note: If this register is set to 0000h, SDRAM automatic refresh will be prohibited.		

Table 13-7: The Reference Setting of REG[E3h-E2h]

Model	REG[E3h]	REG[E2h]
LT7680A-R	06h	1Ah
LT7680B-R	06h	1Ah

REG[E4h] SDRAM Control Register (SDRCR)

Bit	Description	Default	Access
7-4	Must keep 0.	0	RW
3	Report Warning Condition0: Disable or Clear warning flag1: Disable or Clear warning flagWarning condition are memory read cycle close to SDRAMmaximum address boundary (may over maximum address minus512 bytes) or out of range or SDRAM bandwidth insufficient tofulfill panel"s frame rate, then this warning event will be latched,user could check this bit to do some judgments. That warning flagcould be cleared by set this bit as 0.	0	RW
2	SDRAM Timing Parameter Register Enable, SDR_PARAMEN 0: Disable Display RAM timing parameter registers 1: Enable Display RAM timing parameter registers	0	RW
1	Enter Power Saving Mode, SDR_PSAVING 0 to 1 transition will enter power saving mode 1 to 0 transition will exit power saving mode	0	RW
0	 Start SDRAM Initialization Procedure, SDR_INITDONE 0 to 1 transition will execute Display RAM initialization procedure. Read value "1" means Display RAM is initialized and ready for access. Once it was written as 1, it cannot be rewrite as 0. 1 to 0 transition without have any operation. "Write 1" will execute Display RAM initialization procedure. 	0	RW

Note: The following Display RAM Timing Registers (REG[E0h-E3h]) are available only when SDR_PARAMEN (REG[E4] bit2) is set to 1.

REG[E0h] SDRAM Timing Parameter 1

Bit	Description	Default	Access
7-4	NA	0	RO
3-0	Time from Load Mode Command to Active/Refresh Command (T _{MRD}) 0000b: 1 SDRAM Clock 0001b: 2 SDRAM Clock 0010b: 3 SDRAM Clock : 1111b: 16 SDRAM Clock	2	RW

REG[E1h] SDRAM Timing Parameter 2

Bit	Description	Default	Access
7-4	Auto Refresh Period, T _{RFC} 0h – Fh: 1 ~ 16 SDRAM Clock (As REG[E0h] bit[3:0])	8	RW
3-0	Time of Exit SELF Refresh-to-ACTIVE Command (T_{XSR}) 0h – Fh: 1 ~ 16 SDRAM Clock	7	RW

REG[E2h] SDRAM Timing Parameter 3

Bit	Description	Default	Access
7-4	Time of Pre-charge Command Period (T_{RP}, 15/20ns) 0h – Fh: 1 ~ 16 SDRAM Clock	2	RW
3-0	Time of WRITE Recovery Time (T _{WR}) 0h – Fh: 1 ~ 16 SDRAM Clock	0	RW

REG[E3h] SDRAM Timing Parameter 4

Bit	Description	Default	Access
7-4	Delay Time of Active-to-Read/Write (T _{RCD}) 0h – Fh: 1 ~ 16 SDRAM Clock	2	RW
3-0	Time of Active-to-Precharge (T_{RAS}) 0h – Fh: 1 ~ 16 SDRAM Clock	6	RW

13.13 I2C Master Register

REG[E5h-E6h] I2C Master Clock Prescaler Register (I2CMCK)

Bit	Description	Default	Access
7-0	I2C Master Clock Pre-scaler [15:0] REG[E5h] mapping to I2CMCK[7:0]. REG[E6h] mapping to I2CMCK[15:8].	0	RW

REG[E7h] I2C Master Transmit Register (I2CMTXR)

Bit	Description	Default	Access
7-0	I2C Master Transmit [7:0]	0	RW

REG[E8h] I2C Master Receiver Register (I2CMRXR)

Bit	Description	Default	Access
7-0	I2C Master Receiver [7:0]	0	RW

REG[E9h] I2C Master Command Register (I2CMCMD)

Bit	Description	Default	Access
7	Start CommandGenerate (repeated) start condition and be cleared by hardwareAutomaticallyNote: This bit is always read as 0.	0	RW
6	Stop CommandWrite 1: Generate stop condition and be cleared by hardware.Note: This bit is always read as 0.	0	RW
5	 Read Command Write 1: Read form slave and be cleared by hardware automatically. Note: This bit is always read as 0. 	0	RW
4	 Write Command Write 1: Write to slave and be cleared by hardware automatically. Note: This bit is always read as 0. 	0	RW
3	Acknowledge Command Write 0: Send ACK Write 1: Send NACK Note: This bit is always read as 0.	0	RW
2-1	NA	0	RO

LT7680_DS_ENG / V2.0

Bit	Description	Default	Access
0	Noise Filter 0: Disable 1: Enable	0	RW

REG[EAh] I2C Master Status Register (I2CMST)

Bit	Description	Default	Access
	Received Acknowledge from Slave		
7	0: Acknowledge received.	0	RO
	1: No Acknowledge received.		
	I2C Bus is Busy		
6	0: Idle. "0" after STOP signal detected	0	RO
	1: Busy. "1" after START signal detected		
5-2	NA	0	RO
	I2C Transfer in Progress		
1	0: when transfer complete	0	RO
	1: when transferring data		
	Arbitration Lost State		
	When LT7680 lost Arbitration, this bit will be set 1.		
0	Note: When a Stop signal is detected, but is not required, then it means the condition of arbitration loss. The LT7680 I2C Master will drive SDA to 1, but the other Master will drive SDA to 0.	0	RO

13.14 GPIO Register

REG[F0h] GPIO-A Direction (GPIOAD)

Bit	Description	Default	Access
	GPIOA[7] In/Out Control		
7	0: Output.	FFh	RW
	1: Input.		
6-0	NA	NA	NA

REG[F1h] GPIO-A (GPIOA)

Bit	Description	Default	Access
7	GPIOA[7] Data Write: Output Data to GPIOA Read: Read Data from GPIOA GPIOA[7] is a General Purpose I/O. These signals are shared with DB[15:8].		RW
6-0	NA	NA	NA

REG[F2h] GPIO-B (GPIOB)

Bit	Description	Default	Access
7-0	NA	NA	NA

REG[F3h] GPIO-C Direction (GPIOCD)

Bit	Description	Default	Access
7-0	GPIOC In/Out Control 0: Output 1: Input.	FFh	RW

REG[F4h] GPIO-C (GPIOC)

Bit	Description	Default	Access
7	GPIOC[7] Data Write: Output Data to GPIOC[7] Read: Read Data from GPIOC[7] GPIOC[7] is shared with PWM[0]. GPIOC is available only when PWM and SPI Master functions disabled.		RW
6-5	NA	NA	RW
4-0	GPIOC[4:0] Data Write: Output Data to GPIOC[4:0] Read: Read Data from GPIOC[4:0] GPIOC[4:0] are shared with { SFCS1#, SFCS0#, SFDI, SFDO, SFCLK }. They are available when PWM and SPI Master functions disabled.		RW

REG[F5h] GPIO-D Direction (GPIODD)

Bit	Description	Default	Access
	GPIOD In/Out Control		
7-0	0: Output	FFh	RW
	1: Input		

REG[F6h] GPIO-D (GPIOD)

Bit	Description	Default	Access
7-6	GPIOD Data Write: Output Data to GPIOD[7:0] Read: Read Data from GPIOD[7:0] GPIOD[7:6] are shared with PD[18, 2]. GPIOD[7,6] are available when LCD panel data bus is 16bits.	NA	RW
5-0	NA	NA	NA

REG[F7h-FFh]: Reserved.

Package Information

■ LT7680 (QFN-68pin)

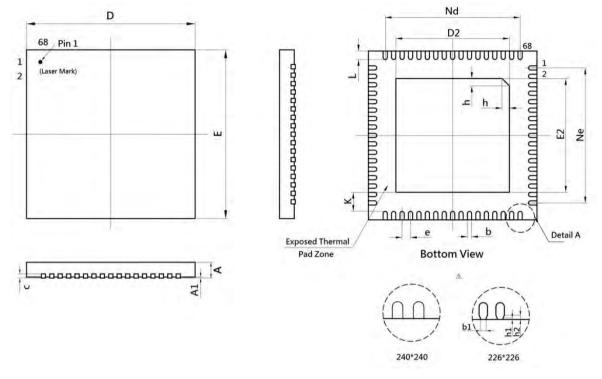


Figure B-2: 68Pin QFN Outline

Note: When PCB layout, the heat pad of LT7680's back (thermal Pad Zone) must be directly grounded.

Symbol	Millimeter			Symphol	Sumbol			r
Symbol	Min.	Nom.	Max	Symbol	Min.	Nom.	Max	
Α	0.70	0.75	0.8	E	7.9	8.0	8.10	
A1	- 0.02 0.05		0.05	Ne		6.40BSC		
b	0.15	0.20	0.25	L	0.35	0.40	0.45	
b 1	0.14REF			K	0.20	-	-	
С	0.18	0.20	0.25	h	0.30	0.35	0.40	
D	7.90 8.00 8.10			h1		0.04REF		
е	0.40BSC			h2		0.10REF		
Nd	6.40BSC							

Table B-1: 68Pin QFN Dimenstion

L/F 载体尺寸	Symbol	Millimeter	L/F Dimension	Symbol	Millimeter
0.4040.40	D2	5.49+/- 0.10	000+000	D2	5.39+/- 0.10
240*240	E2	5.49+/- 0.10	226*226	E2	5.39+/- 0.10

Table B-2: Lead Frame Dimension

Version	Date	Description	
V1.0	2017/11/01	2017/11/01 LT7680 Preliminary Release	
		1. Update Section 8.1 Internal CGROM	
V1.1	2020/4/28	2. Update Table 8-1~8-4	
		3. Add Figure 8-1B	
V2.0	2020/7/10	Update MCU"s I2C Interface to 4-Wires SPI.	

Table B-3: Revision

Copyright

This document is the copyright of Levetop Semiconductor Co., Ltd. No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of Levetop. The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Levetop assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Levetop makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Levetop's products are not authorized for use as critical components in life support devices or systems. Levetop reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.levetop.cn.