SSD1619A

Product Preview

400 Source x 300 Gate Red/Black/White Active Matrix EPD Display Driver with Controller

This document contains information on a product under development. Solomon Systech reserves the right to change or discontinue this product without notice.

Appendix: IC Revision history of SSD1619A Specification

Version	Change Items	Effective Date
0.10	1 st Release	29-Dec-16

CONTENTS

1	G	ENERAL DESCRIPTION	5
2	FE	EATURES	5
3		RDERING INFORMATION	
4	в	LOCK DIAGRAM	6
5		N DESCRIPTION	-
6		JNCTIONAL BLOCK DESCRIPTION	
0			
	6.1 6.1.1	MCU INTERFACE	
	6.1.1		
	6.1.3		
	6.2	RAM	
	6.3	OSCILLATOR	
	6.4	BOOSTER & REGULATOR	
	6.5	VCOM SENSING	
	6.6	GATE WAVEFORM, PROGRAMMABLE SOURCE AND VCOM WAVEFORM	
	6.7	WAVEFORM SETTING	
	6.8	OTP	
	6.8.1	THE OTP INFORMATION	
	6.8.2	2 THE OTP CONTENT AND ADDRESS MAPPING	
	6.9	TEMPERATURE SEARCHING MECHANISM	17
	6.10	EXTERNAL TEMPERATURE SENSOR I2C SINGLE MASTER INTERFACE	
	6.11	Cascade Mode	
	6.12	VCI DETECTION	18
	6.13		
7	C	OMMAND TABLE	19
8	C	OMMAND DESCRIPTION	35
	8.1	DRIVER OUTPUT CONTROL (01H)	
	8.2	GATE SCAN START POSITION (0FH)	
	8.3	DATA ENTRY MODE SETTING (11H)	
	8.4	SET RAM X - ADDRESS START / END POSITION (44H)	
	8.5	SET RAM Y - ADDRESS START / END POSITION (45H)	
	8.6	SET RAM ADDRESS COUNTER (4EH-4FH)	
9	T١	YPICAL OPERATING SEQUENCE	40
	9.1	NORMAL DISPLAY	40
	9.2	VCOM OTP PROGRAM	
	9.3	WS OTP PROGRAM	
1(ABSOLUTE MAXIMUM RATING	
11		ELECTRICAL CHARACTERISTICS	
12		AC CHARACTERISTICS	
14			
	12.1 12.2		
13		APPLICATION CIRCUIT	
14	1	PACKAGE INFORMATION	47

TABLES

TABLE 3-1 : Ordering Information	6
TABLE 5-1 : MCU INTERFACE SELECTION	8
TABLE 6-1 : INTERFACE PINS ASSIGNMENT UNDER DIFFERENT MCU INTERFACE	10
TABLE 6-2 : CONTROL PINS STATUS OF 4-WIRE SPI	10
TABLE 6-3 : CONTROL PINS STATUS OF 3-WIRE SPI	11
TABLE 6-4 : LUT MAPPING TO RAM CONTENT FOR MONO BLACK WHITE AND MONO RED	12
TABLE 6-5 : RAM ADDRESS MAP ACCORDING TO ABOVE CONDITION	
TABLE 6-6 : VS [NX-LUTN] VALUE MAPPING TABLE	14
TABLE 7-1: COMMAND TABLE	19
TABLE 10-1 : MAXIMUM RATINGS	43
TABLE 11-1: DC CHARACTERISTICS	
TABLE 11-2: REGULATORS CHARACTERISTICS	44
TABLE 12-1: OSCILLATOR FREQUENCY	
TABLE 12-2 : SERIAL PERIPHERAL INTERFACE TIMING CHARACTERISTICS	45
TABLE 13-1: COMPONENT LIST FOR SSD1619A APPLICATION CIRCUIT	46

FIGURES

FIGURE 4-1 : SSD1619A BLOCK DIAGRAM	6
FIGURE 6-1 : WRITE PROCEDURE IN 4-WIRE SPI MODE	10
FIGURE 6-2 : READ PROCEDURE IN 4-WIRE SPI MODE	11
FIGURE 6-3 : WRITE PROCEDURE IN 3-WIRE SPI	
FIGURE 6-4 : READ PROCEDURE IN 3-WIRE SPI MODE	12
FIGURE 6-5 : GATE WAVEFORM AND PROGRAMMABLE SOURCE AND VCOM WAVEFORM ILLU	STRATION
	14
FIGURE 6-6 : VS[NX-LUT] AND TP[N] MAPPING IN LUT	15
FIGURE 6-7 : THE WAVEFORM SETTING MAPPING IN OTP FOR WAVEFORM SETTING AND TEM	PERATURE
RANGE	16
FIGURE 6-8 : WAVEFORM SETTING AND TEMPERATURE RANGE # MAPPING	17
FIGURE 6-9 : EXAMPLE TEMPERATURE RANGE	17
FIGURE 8-1: OUTPUT PIN ASSIGNMENT ON DIFFERENT SCAN MODE SETTING	36
FIGURE 8-2: EXAMPLE OF SET DISPLAY START LINE WITH NO REMAPPING	37
FIGURE 12-1: SPI TIMING DIAGRAM	45
FIGURE 13-1: SCHEMATIC OF SSD1619A APPLICATION CIRCUIT	46
FIGURE 14-1 : SSD1619AZ DIE TRAY INFORMATION	47

1 General Description

The SSD1619A is an Active Matrix EPD Display Driver with Controller which can support Red/Black/White. It consists of 400 source outputs, 300 gate outputs, 1 VCOM and 1 VBD for border that can support a maximum display resolution 400x300. In addition, the SSD1619A has a cascade mode that can support higher display resolution.

The SSD1619A embeds booster, regulators and oscillator. Data/Commands are sent from general MCU through the hardware selectable Serial peripheral.

2 Features

- Design for dot matrix type active matrix EPD display
- Support Red/Black/White mono color
- Resolution: 400 source outputs; 300 gate outputs; 1 VCOM; 1VBD for border.
- Power supply:
 - VCI: 2.2 to 3.7V
 - VDDIO: Connect to VCI
 - VDD: 1.8V, regulate from VCI supply
- On chip display RAM
 - Mono B/W: 400x300 bits
 - Mono Red: 400x300 bits
- On-chip booster and regulator for generating VCOM, Gate and Source driving voltage.
- Gate driving output voltage:
- 2 levels output (VGH, VGL).
 - Max 40Vp-p.
 - VGH: 10V to 20V; VGL: -VGH.
- Voltage adjustment step: 500mV.
- Source / VBD driving output voltage:
- 4 levels output (VSH1, VSS, VSL, and VSH2).
 - VSH1/VSH2: 2.4V to 17V (Voltage step: 100mV for 2.4V to 8.8V, 200mV for 8.8V to 17V.)
 - VSL: -9V to -17V (Voltage step: 500mV)
- VCOM output voltage

DCVCOM	ACVCOM
-3V to -0.2V in 100mV resolution	 3 levels output VSH1+DCVCOM DCVCOM VSL+DCVCOM

- Built in VCOM sensing
- Support internal generation of OTP programming voltage
- On-chip oscillator.
- Programmable output waveform for different types of EPD display:
 - 28 phases (4 phases/group, 7 groups with repeat function)
 - 1 to 256 times for repeat count
 - Max. 255 frame/phase
- On-chip OTP can store Waveform Setting (max. 25 sets) including (LUT, gate/source voltage, frame rate and Temperature Range), VCOM value and waveform version ID
- Reserve 10-byte OTP space for module identification
- Adjustable frame rate from 15Hz to 200Hz (Remark: For Gate setting as 300 MUX)
- Low voltage detect for supply voltage
- High voltage ready detect for driving voltage
- Read OTP function
- Built-in CRC checking method for waveform setting and temperature range in OTP.
- Support display partial update
- Auto write RAM command for regular pattern
- I2C Single Master Interface to read external temperature sensor reading.
- Internal Temperature Sensor
- Cascade mode to support higher display resolution.
- MCU interface: Serial peripheral.
- Maximum SPI write speed 20MHz
- Available in COG package

3 ORDERING INFORMATION

Ordering Part Number	Package Form	Remark
SSD1619AZ	Gold Bump Die	Bump Face Up On Waffle pack Die thickness: 300um Bump height: 12um

Table 3-1 : Ordering Information

4 Block Diagram

Figure 4-1 : SSD1619A Block Diagram

5 PIN DESCRIPTION

Key: I = Input, O =Output, IO = Bi-directional (input/output), P = Power pin, C = Capacitor Pin NC = Not Connected, Pull L =connect to V_{SS}, Pull H = connect to V_{DDIO}

			Function	Description	
Input pow	er				·
VCI	Ρ	Power Supply	Power Supply	Power input pin for the chip.	-
VCIA	P	Power Supply	Power Supply	Power input pin for the chip. - Connect to VCI in the application circuit.	-
VDDIO	Ρ	Power Supply	Power for interface logic pins	Power input pin for the Interface Connect to VCI in the application circuit.	-
VDD			-		
EXTVDD	I	VDDIO/ VSS	Regulator bypass		
VSS	P	VSS	GND	Ground (Digital).	-
VSSA	Р	VSS	GND	Ground (Analog) - Connect to VSS in the application circuit.	-
VSSBG	Ρ	VSS	GND	Ground (Reference) pin. - Connect to VSS in the application circuit.	-
VSSGS	P VSS GND Ground (Output) pin. - Connect to VSS in the application circuit.		-		
VPP	P	Power Supply	OTP power	Power Supply for OTP Programming.	Open
Digital I/O	1	1	I	1	1
SCL	I	MPU	Data Bus	Serial clock pin for interface: Refer to Session 6.1 - MCU Interface.	-
SDA	I/O	MPU	Data Bus	Serial data pin for interface: Refer to Session 6.1 - MCU Interface.	
CS#	I	MPU	Logic Control	This pin is the chip select input connecting to the MCU.	
D/C#	I	MPU	Logic Control	This pin is Data/Command control pin connecting to the MCU. Refer to Session 6.1- MCU Interface.	VSS VDDIO or VSS
RES#	I	MPU	System Reset	This pin is reset signal input. Active Low.	-

Pin name	Туре	Connect to	Function	Description			
BUSY	0	MPU	Device Busy Signal	This pin is Busy state output pin When Busy is High, the operation of the chip should not be interrupted, and command should not be sent. For example., The chip would put Busy pin High when - Outputting display waveform; or - Programming with OTP - Communicating with digital temperature sensor In the cascade mode, the BUSY pin of the slave chip should be left open.	Open		
M/S#	1	VDDIO/VSS	Cascade Mode Selection	 This pin is Master and Slave selection pin. For the single chip application, the M/S# pin should be connected to VDDIO. In the cascade mode: For Master Chip, the M/S# pin should be connected to VDDIO. For Slave Chip, the M/S# pin should be connected to VSS. The oscillator and the booster & regulator circuits of the slave chip will be disabled. The corresponding pins including CL, VDD, VDDIO, VGH, VGL, VSH1, VSH2, VSL and VCOM must be connected to the master chip. 	-		
CL	I/O	NC	Clock signal	 This is the clock signal pin. For the single chip application, the CL pin should be left open. In the cascade mode, the CL pin of the slave chip should be connected to the CL pin of the master chip. 	Open		
BS1	1	VDDIO/VSS	MCU Interface Mode Selection	These pins are for selecting different bus interface. Table 5-1 : MCU interface selection BS1 MCU Interface L 4-wire SPI H 3-wire SPI (9 bits SPI)	-		
TSDA		Temperature sensor SDA	Interface to Digital Temp. Sensor	This pin is I ² C Interface to digital temperature sensor Data pin. External pull up resistor is required when connecting to I ² C slave.	Open		
TSCL	0	Temperature sensor SCL	Interface to Digital Temp. Sensor	This pin is I ² C Interface to digital temperature sensor Clock pin. External pull up resistor is required when connecting to I ² C slave.	Open		
Analog Pir	<u>1</u>						
GDR		POWER MOSFET Driver Control	VGH, VGL Generation	N-Channel MOSFET gate drive control pin.	-		
RESE	I	Booster Control Input		Current sense input pin for the control Loop.	-		
VGH	С	Stabilizing capacitor		Positive Gate driving voltage. Connect a stabilizing capacitor between VGH and VSS in the application circuit.	-		
VGL	С	Stabilizing capacitor		This pin is Negative Gate driving voltage. Connect a stabilizing capacitor between VGL and VSS in the application circuit.	-		

Pin name	Туре	Connect to	Function	Description	When not in use
VSH1	С	Stabilizing capacitor	VSH1, VSH2, VSL Generation	This pin is Positive Source driving voltage, VSH1 Connect a stabilizing capacitor between VSH1 and VSS in the application circuit.	-
VSH2	С	Stabilizing capacitor		This pin is Positive Source driving voltage, VSH2 Connect a stabilizing capacitor between VSH2 and VSS in the application circuit.	
VSL	С	Stabilizing capacitor		This pin is Negative Source driving voltage. Connect a stabilizing capacitor between VSL and VSS in the application circuit.	-
VCOM	С	Panel/ Stabilizing capacitor	VCOM Generation	These pins are VCOM driving voltage Connect a stabilizing capacitor between VCOM and VSS in the application circuit.	-
Panel Driv	ing				
S [399:0]	0	Panel	Source driving signal	Source output pin.	Open
G [299:0]	0	Panel	Gate driving signal	Gate output pin.	Open
VBD	0	Panel	Border driving signal	Border output pin.	Open
Others					
NC	NC	NC	Not Connected	Keep open. Don't connect with other NC pins.	Open
RSV	NC	NC	Reserved	This is a reserved pin, keep floating	Open
TPA, TPB, TPC, TPD, TPF, FB	NC	NC	Reserved for Testing	Reserved pins. - Keep open. - Don't connect to other NC pins and test pins including TPA, TPB, TPC, TPD, TPE, TPF and FB.	Open
GD [3:0]	0	NC	Not Connected	Reserved pins. - Keep open.	Open
TIN	I	NC	Reserved for Testing	Reserved pins. - Keep open.	Open
TPE	0	NC			Open

6 Functional Block Description

6.1 MCU Interface

6.1.1 MCU Interface selection

The SSD1619A can support 3-wire/4-wire serial peripheral. In the SSD1619A, the MCU interface is pin selectable by BS1 shown in Table 6-1.

Note

 $^{(1)}\,L$ is connected to V_{SS}

 $^{(2)}$ H is connected to V_{DDIO}

Table 6-1 : Interface pins assignment under different MCU interface

MCU Interface	Pin Name					
MCO Interface	BS1	RES#	CS#	D/C#	SCL	SDA
4-wire serial peripheral interface (SPI)	Connect to VSS	Required	Required	Required	SCL	SDA
3-wire serial peripheral interface (SPI) – 9 bits SPI	Connect to VDDIO	Required	Required	Connect to VSS	SCL	SDA

6.1.2 MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 6-2

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	L	L
Write data	Ť	Data bit	Н	L

Note:

(1) L is connected to V_{SS} and H is connected to V_{DDIO}

(2) ↑ stands for rising edge of signal

(3) SDA(Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

Figure 6-1 : Write procedure in 4-wire SPI mode

P 10/48

Figure 6-2 : Read procedure in 4-wire SPI mode

6.1.3 MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or write data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Table 6-3 : Control pins status of 3-wire SPI

Function	Function SCL pin		D/C# pin	CS# pin	
Write command	↑	Command bit	Tie LOW	L	
Write data	\uparrow	Data bit	Tie LOW	L	

Note:

- (1) L is connected to V_{SS} and H is connected to V_{DDIO}
- (2) ↑ stands for rising edge of signal

Figure 6-3 : Write procedure in 3-wire SPI

In the read operation (Register 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35), SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-4 shows the read procedure in 3-wire SPI.

Figure 6-4 : Read procedure in 3-wire SPI mode

6.2 RAM

The On chip display RAM is holding the image data.

1 set of RAM is built for Mono B/W. The RAM size is 400x300 bits.

1 set of RAM is built for Mono Red. The RAM size is 400x300 bits.

Table 6-4 : LUT mapping to RAM content for Mono Black White and Mono Red

R	B/W	LUT
0	0	LUT 0
0	1	LUT 1
1	0	LUT 2
1	1	LUT 3

In order to write the image data into the display RAM, it is necessary to define the Data Entry Mode Setting (Command 0x11h), the Driver Output Control (Command 0x01h) and the Gate Scan Start Position (Command 0x0Fh). The following is an example to show how to set these commands. And, Table 6-5 is the corresponding RAM address mapping of these command settings.

• Command "Data Entry Mode Setting" R11h is set to:

Address Counter update in X direction	AM=0
X: Increment	ID[1:0] =11
Y: Increment	

• Command "Driver Output Control" R01h is set to:

300 Mux	MUX = 12Bh
Select G0 as 1 st gate	GD = 0
Left and Right gate Interlaced	SM = 0
Scan From G0 to G299	TB = 0

- Command "Gate Scan Start Position" R0Fh is set to:
 Set the Start Position of Gate = G0 SCN=0
- Then the data byte sequence: DB0, DB1, DB2 ... DB18 ... DB19, DB20 ... DB14999

Table 6-5 : RAM address map according to above condition

		S0	S1	S2	S3	S4	S5	S6	S7			S392	S393	S394	S395	S396	S397	S398	S399	Sou
			00h						31h				X- ADD							
G0	00h	DB0 [7]	DB0 [6]	DB0 [5]	DB0 [4]	DB0 [3]	DB0 [2]	DB0 [1]	DB0 [0]			DB49 [7]	DB49 [6]	DB49 [5]	DB49 [4]	DB49 [3]	DB49 [2]	DB49 [1]	DB49 [0]	
G1	01h	DB50 [7]	DB50 [6]	DB50 [5]	DB50 [4]	DB50 [3]	DB50 [2]	DB50 [1]	DB50 [0]			DB99 [7]	DB99 [6]	DB99 [5]	DB99 [4]	DB99 [3]	DB99 [2]	DB99 [1]	DB99 [0]	
										÷	\rightarrow									
										↓: ↓	\rightarrow									
G298	12Ah	DB14900 [7]	DB14900 [6]	DB14900 [5]	DB14900 [4]	DB14900 [3]	DB14900 [2]	DB14900 [1]	DB14900 [0]			DB14949 [7]	DB14949 [6]	DB14949 [5]	DB14949 [4]	DB14949 [3]	DB14949 [2]	DB14949 [1]	DB14949 [0]	
G299	12Bh	DB14950 [7]	DB14950 [6]	DB14950 [5]	DB14950 [4]	DB14950 [3]	DB14950 [2]	DB14950 [1]	DB14950 [0]			DB14999 [7]	DB14999 [6]	DB14999 [5]	DB14999 [4]	DB14999 [3]	DB14999 [2]	DB14999 [1]	DB14999 [0]	
GATE	Y-ADDR																			

6.3 Oscillator

The oscillator module generates the clock reference for waveform timing and analog operations.

6.4 Booster & Regulator

A voltage generation system is included in the driver. It provides all necessary driving voltages required for an AMEPD panel including VGH, VGL, VSH1, VSH2, VSL and VCOM. External application circuit is needed to make the on-chip booster & regulator circuit work properly.

6.5 VCOM Sensing

This functional block provides the scheme to select the optimal VCOM DC level. The sensed value can be programmed into OTP.

The flow of VCOM sensing:

- Active Gate is scanning during the VCOM sense Period.
- Source are VSS.
- VCOM pin used for sensing.
- During Sensing period, BUSY is high.
- After Sensing, Active Gate return to non-select stage.

6.6 Gate waveform, Programmable Source and VCOM waveform

- There are 7 groups, each group contains 4 phases, totally 28 phases for programmable Source waveform with different phase length.
 - The phase length of LUT0~LUT4 is defined as TP[nX]
 - The range of TP[nX] is from 0 to 255.
 - > n represents the Group number from 0 to 6; X represents the sub-group number from A to D.
 - > TP[nX] = 0 indicates phase skipped.
- The repeat count of group is defined as RP[n], which is used for the count of repeating TP[nA], TP[nB], TP[nC] and TP[nD];
 - > The range of RP[n] is from 0 to 255.
 - n represents the Group number from 0 to 6;
 - RP[n] = 0 indicates run time =1,
- Source/VCOM Voltage Level: VS [nX-LUT] is constant in each phase.
- VS [nX-LUTn] indicates the voltage in phase n for transition LUT.
 - ➢ 00 − VSS
 - ➢ 01 − VSH1
 - ➤ 10 VSL
 - ➤ 11 VSH2

Table 6-6 : VS [nX-LUTn] value mapping table

LUT0	В	00 – VSS, 01 – VSH1, 10 – VSL, 11-VSH2
LUT1	W	00 – VSS, 01 – VSH1, 10 – VSL, 11-VSH2
LUT2	R	00 – VSS, 01 – VSH1, 10 – VSL, 11-VSH2
LUT3	R	Assign as the same as LUT2
LUT4	VCOM	00 – DCVCOM, 01 – VSH1+DCVCOM, 10 – VSL+ DCVCOM

VS [nX-LUT], TP[nX], RP[n], VSH , VSL are stored in waveform lookup table register [LUT].

Figure 6-5 : Gate waveform and Programmable Source and VCOM waveform illustration

6.7 Waveform Setting

WAVEFORM SETTING (WS) contains 76bytes, which define the display driving waveform settings. They are arranged in following format figure shown

			D4	D2	D2	D1 D0		
	D7 D6	D5 D4		D3 D2				
0	VS[0A-L0]	VS[0B-L0]		VS[0C-L0]		VS[0D-L0]		
1	VS[1A-L0]	VS[1B-L0]		VS[1C-L0]		VS[1D-L0]		
2	VS[2A-L0]	VS[2B	_		C-L0]	VS[2D-L0]		
3	VS[3A-L0]	VS[3B			C-L0]	VS[3D-L0]		
4	VS[4A-L0]	VS[4B			C-L0]	VS[4D-L0]		
5	VS[5A-L0]	VS[5B			C-L0]	VS[5D-L0]		
6	VS[6A-L0]	VS[6B	-		C-L0]	VS[6D-L0]		
7	VS[0A-L1]	VS[0B	3-L1]	VS[0	C-L1]	VS[0D-L1]		
31	VS[3A-L4]	VS[3B	_	_	C-L4]	VS[3D-L4]		
32	VS[4A-L4]	VS[4B		VS[4	C-L4]	VS[4D-L4]		
33	VS[5A-L4]	VS[5B	8-L4]		C-L4]	VS[5D-L4]		
34	VS[6A-L4]	VS[6B	8-L4]	VS[6	C-L4]	VS[6D-L4]		
35			TP	[0A]				
36			TP	0B]				
37			TP[
38			TP[0D]				
39			RF	·[0]				
40			TP[1A]				
41			TP	1B]				
42			TP[1C]				
43			TP[1D]				
44			RF	2[1]				
65			TP[6A]				
66			TP					
67			TP[
68			TP[
69		RP[6]						
70		VGH						
71	VSH1							
72	VSH2							
73	VSL							
74		Frame 1						
75				ne 2				
	t reported and							

Figure 6-6 : VS[nX-LUT] and TP[n] mapping in LUT

WS can be accessed by MCU interface or loaded from OTP.

5 registers are involved to set WS from MCU interface

- WS byte 0~69, the content of VS [n-XY], TP [n#], RP[n], are the parameter belonging to Register 0x32
- WS byte 70, the content of gate level, is the parameter belonging to Register 0x03.
- WS byte 71~73, the content of source level, is the parameter belonging to Register 0x04.
- WS byte 74, the content of dummy line, is the parameter belonging to Register 0x3A.
- WS byte 75, the content of gate line width, is the parameter belonging to Register 0x3B.

6.8 OTP

6.8.1 The OTP information

The OTP is the non-volatile memory and stored the information of:

- 25 set of WAVEFORM SETTING (WS), including (LUT, gate/source voltage and frame rate)
- 25 set of TEMPERATURE RANGE (TR). which consist of
 Lower limit (TEMP [m-L]) and Upper limit (TEMP [m-H]) for each set of WS#.
- VCOM value.
- Waveform version ID

Remark:

- WS [m] means the waveform setting of temperature set m, the configuration are same as the definition in LUT. The corresponding low temperature range of WS[m] defined as TEMP [m-L] and high range defined as TEMP [m-H]
- Load WS [m] from OTP for LUT if Temp [m-L] < Temperature Register <= Temp [m-H]

6.8.2 The OTP content and address mapping

The mapping table of OTP for waveform setting and temperature range is shown in Figure 6-7 :

	D7	D6	D5	D4	D3	D2	D1	D0	
0									
				N	/S 0				
75									
76									
				V	/S 1				
151									
152				14	/S 2				
 227				v	152				
227									
-				VA VA	/S 3				
303				•					
505									
1748									
				W	S 23				
1823									
1824									
				W	S 24				
1899									
1900				temp	_L[7:0]				
1901		temp_H[3:0]			temp	L[11:8]		TR0
1902				temp	H[11:4]				
1903									
1904				٦	IR1				
1905									
1906									
1907				٦	IR2				
1908									
1909									
1910				٦	TR3				
1911									
1912				-					
1913				T	IR4				
1914									
1000									
1969				-	D 00				
1970				1	R23				
1971									
1972				т	D 24				
1973				1	R24				
1974									

Figure 6-7 : The Waveform setting mapping in OTP for waveform setting and temperature range

6.9 Temperature Searching Mechanism

Legend:	
WS#	Waveform Setting no. #
TR#	Temperature Range no. #
LUT	560 bit register storing the waveform setting (volatile)
Temperature register	12bit Register storing reading from temperature sensor (volatile)
OTP	A non-volatile storing 25 sets of waveform setting and 25 set of temperature range
WS_sel_ address	an address pointer indicating the selected WS#

OTP (non-volatile)	
WS0	TR0
WS1	TR1
WS2	TR2
WS3	TR3
WS23	TR23
WS24	TR24

Figure 6-8 : Waveform Setting and Temperature Range # mapping

IC implementation requirement

- 1 Compare temperature register from **TR0 to TR24**, in sequence. **The last match will be recorded**
 - i.e. If the temperature register fall in both TR3 and TR5. WS5 will be selected
- 2 There is no restriction on the sequence of TR0, TR2.... TR24

Example Temperature Range assignment

Waveform setting	Temperature range	Lower Limit [Hex]	Upper Limit[Hex]
WS0	-128 DegC < Temperature <= 5 DegC	800	050
WS1	5 DegC < Temperature <= 10DegC	050	0A0
WS2	10 DegC < Temperature <= 15DegC	0A0	0F0
WS3	15 DegC < Temperature <= 20DegC	0F0	140
WS4	20 DegC < Temperature <= 25DegC	140	190
WS5	25 DegC < Temperature <= 30DegC	190	1E0
WS6	30 DegC < Temperature <= 35DegC	1E0	230
WS7	35 DegC < Temperature <= 127.9DegC	230	7FF
Others		000	000

Figure 6-9 : Example Temperature Range

User application

- 1 If temperature is 5 DegC, WS0 is selected
- 2 If temperature is 23 DegC, WS4 is selected
- 3 If temperature > 35 DegC, WS7 is selected

6.10 External Temperature Sensor I2C Single Master Interface

The chip provides two I/O lines [TSDA and TSCL] for connecting digital temperature sensor for temperature reading sensing.

TSDA will treat as SDA line and TSCL will treat as SCL line. They are required connecting with external pull-up resistor.

- 1. If the Temperature value MSByte bit D11 = 0, then
- the temperature is positive and value (DegC) = + (Temperature value) / 16
- 2. If the Temperature value MSByte bit D11 = 1, then

the temperature is negative and value (DegC) = - (2's complement of Temperature value) / 16

			/
12-bit binary	Hexadecimal	Decimal	Value
(2's complement)	Value	Value	[DegC]
0111 1111 0000	7F0	2032	127
0111 1110 1110	7EE	2030	126.875
0111 1110 0010	7E2	2018	126.125
0111 1101 0000	7D0	2000	125
0001 1001 0000	190	400	25
0000 0000 0010	002	2	0.125
0000 0000 0000	000	0	0
1111 1111 1110	FFE	-2	-0.125
1110 0111 0000	E70	-400	-25
1100 1001 0010	C92	-878	-54.875
1100 1001 0000	C90	-880	-55

6.11 Cascade Mode

The SSD1619A has a cascade mode that can cascade 2 chips to achieve the display resolution up to 800 (sources) x 300 (gates). The pin M/S# is used to configure the chip. When M/S# is connected to VDDIO, the chip is configured as a master chip. When M/S# is connected to VSS, the chip is configured as a slave chip.

When the chip is configured as a master chip, it will be the same as a single chip application, ie, all circuit blocks will be worked as usual. When the chip is configured as a slave chip, its oscillator and booster & regulator circuit will be disabled. The oscillator clock and all booster voltages will be come from the master chip. Therefore, the corresponding pins including CL, VDD, VGH, VGL, VSH1, VSH2, VSL, VGL and VCOM must be connected to the master chip.

6.12 VCI Detection

The VCI detection function is used to detect the VCI level when it is lower than Vlow, threshold voltage set by register.

In the SSD1619A, there is a command to execute the VCI detection function. When the VCI detection command is issued, the VCI detection will be executed. During the detection period, BUSY output is at high level. BUSY output is at low level when the detection is completed. Then, user can issue the Status Bit Read command to check the status bit for the result of VCI, which 0 is normal, 1 is VCI<VIow.

6.13 HV Ready Detection

The HV Ready detection function is used to detect whether the analog block is ready.

In the SSD1619A, there is a command to execute the HV Ready detection function. When the HV Ready detection command is issued, the HV Ready will be executed. During the detection period, BUSY output is at high level. BUSY output is at low level when the detection is completed. Then, user can issue the Status Bit Read command to check the status bit for the result of HV Ready, which 0 is normal, 1 indicate HV is not ready.

7 COMMAND TABLE

Table 7-1: Command Table

Prove D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description 0 0 1 Ar Aa	
0 1 Ar Ae Ae Aa Aa <td></td>	
0 1 Ar As Aa Aa <td></td>	
0 1 0 0 0 0 0 Ae 0 1 0 0 0 0 0 Ae Bi Bo 0 1 0 0 0 0 0 B2 B1 Bo 0 1 0 0 0 0 B2 B1 Bo 0 1 0 0 0 0 B2 B1 Bo 0 1 0 0 0 0 B2 B1 Bo 0 1 1 0 0 0 0 B2 B1 Bo 0 1	
0 1 0 0 0 0 B2 B1 B6 0 1 0 0 0 0 B2 B1 B6 B[2:0] = 000 [POR]. Gate scanning sequence and direct B[2]: GD Selects the 1st output Gate GD=0 [POR], G0 is the 1st gate output channel, q output sequence is G0,G1, G2, G3 GD=1, G1 is the 1st gate output channel, q output sequence is G1, G0, G3, G2 B[1]: SM Change scanning order of gate driv SM=0 [POR], G0, G1, G2, G3299 (left and righ interlaced) SM=1, G0, G2, G4G298, G1, G3,G B[0]: TB TB = 0 [POR], scan from G0 to G29 TB = 1, scan from G299 to G0. 0 0 0 0 0 1 1 A2 0 0 0 0 1 1 A3 A2 A1 0 1 0 0 0 1 1 A3 A2 A1 A0	1).
0 0 0 0 0 1 1 Gate scanning sequence and direct B[2]: GD Selects the 1st output Gate GD=0 [POR]. GO is the 1st gate output channel, go upput sequence is G0,G1, G2, G3. GD=1, G1 is the 1st gate output channel, go upput sequence is G1, G0, G3, G2 B[1]: SM Change scanning order of gate driv. SM=0 [POR]. G0, G1, G2, G3299 (left and righ interlaced) SM=1, G0, G2, G4G298, G1, G3,G B[0]: TB TB = 0 [POR]. scan from G0 to G29 TB = 1, scan from G299 to G0. SM=1, G0, G2, G4G298, G1, G3,G B[0]: TB (TB = 0 [POR]. scan from G0 to G29 TB = 1, scan from G299 to G0. Set Gate driving voltage A[4:0] VGH A[4:0] VGH	
0 0 0 0 0 1 1 Gate Driving voltage 0 1 0 0 0 1 1 Gate Driving voltage 0 1 0 0 0 1 1 Gate Driving voltage 0 1 0 0 0 1 1 Gate Driving voltage 0 1 0 0 0 1 1 Gate Driving voltage 0 1 0 0 0 1 1 Gate Driving voltage 0 1 0 0 0 1 1 Gate Driving voltage 0 1 0 0 0 1 1 Gate Driving voltage 0 1 0 0 0 1 1 Gate Driving voltage 0 1 0 0 0 1 1 Gate Driving voltage 0 1 0 0 0 1 1	ion
Image: Selects the 1st output Gate GD=0 [POR], G0 is the 1st gate output channel, g output sequence is G0,G1, G2, G3 GD=1, G1 is the 1st gate output channel, g output sequence is G1, G0, G3, G2 B[1]: SM Change scanning order of gate driv SM=0 [POR], G0, G1, G2, G4G298, G1, G3,G9 B[0]: TB TB = 0 [POR], scan from G0 to G29 TB = 1, scan from G299 to G0. 0 0 0 0 1 1 Gate Driving voltage Control Set Gate driving voltage A[4:0] = 19h [POR] VGH setting from 10V to 20V 0 1 0 0 A4 A3 A2 A1 A0 0 1 0 0 0 1 1 Gate Driving voltage Control Set Gate driving voltage A[4:0] = 19h [POR] VGH setting from 10V to 20V 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0<	1011
0 0 0 0 0 0 1 1 1 Gate Driving voltage 0 1 0 0 0 1	
0 0 0 0 0 1 1 Gate Driving voltage 0 0 0 0 0 1 1 0 0 0 1 1 1 Gate Driving voltage 0 1 0 0 0 1 1 1 Gate Driving voltage Gate Driving voltage 0 1 0 0 0 1 1 1 Gate Driving voltage 0 1 0 0 0 1 1 1 Gate Driving voltage 0 1 0 0 0 1 1 1 Gate Driving voltage Gate driving voltage 0 1 0 0 0 1 1 1 Gate Driving voltage Gate driving voltage 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0	
0 0 0 0 0 0 0 1 1 1 Gate Driving voltage 0 1 0 0 0 0 1 1 1 Gate Driving voltage 0 1 0 0 0 0 1 1 1 Gate Driving voltage 0 1 0 0 0 0 1 1 1 Gate Driving voltage 0 1 0 0 0 0 1 1 Gate Driving voltage A[4:0] VGH A[4:0] VGH 0 1 0 0 0 A_4 A_3 A_2 A_1 A_0 Control A[4:0] VGH A[4:0] VGH 0 1 0 0 0 A_4 A_3 A_2 A_1 A_0 Control A[4:0] VGH A[4:0] VGH 0 1 0 0 0 A_4 A_3	
GD=1, G1 is the 1st gate output channel, goutput sequence is G1, G0, G3, G2 B[1]: SM Change scanning order of gate driv SM=0 [POR], G0, G1, G2, G3299 (left and righ interlaced) SM=1, G0, G2, G4G298, G1, G3,G 0 0 0 0 0 1 1 Gate Driving voltage Control B[0]: TB TB = 0 [POR], scan from G0 to G29 TB = 1, scan from G299 to G0. 0 1 0 0 0 1 1 Gate Driving voltage Control Set Gate driving voltage A[4:0] = 19h [POR] VGH setting from 10V to 20V 4[4:0] VGH A[4:0] VGH 03h 10 0 VGH 03h 10 0 0 1 0 0 A4 A3 A2 A1 A0	
0 0 0 0 0 0 0 0 1 1 Gate Driving voltage Control Gate Driving voltage Control Set Gate driving voltage A[4:0] = 19h [POR] VGH setting from 10V to 20V 0 1 0 0 0 1 1 Gate Driving voltage Control Set Gate driving voltage A[4:0] = 19h [POR] VGH setting from 10V to 20V 0 1 0 0 0 1 1 0 0 1 1 0 0 1 <	•••
0 0 0 0 0 1	ate
O O O O O O I I Gate Driving voltage Charge scanning order of gate drives G0, G1, G2, G3299 (left and right interlaced) SM=1, G0, G2, G4G298, G1, G3,G 0 0 0 0 0 1 1 Gate Driving voltage Control B[0]: TB TB = 0 [POR], scan from G0 to G29 TB = 1, scan from G299 to G0. 0 1 0 0 0 1 1 Gate Driving voltage Control Set Gate driving voltage A[4:0] = 19h [POR] VGH setting from 10V to 20V 1 0 0 0 A1 A2 A1 A0 0 1 0 0 0 A4 A3 A2 A1 A0	
O O O O O O I I Gate Driving voltage Charge scanning order of gate drives G0, G1, G2, G3299 (left and right interlaced) SM=1, G0, G2, G4G298, G1, G3,G 0 0 0 0 0 1 1 Gate Driving voltage Control B[0]: TB TB = 0 [POR], scan from G0 to G29 TB = 1, scan from G299 to G0. 0 1 0 0 0 1 1 Gate Driving voltage Control Set Gate driving voltage A[4:0] = 19h [POR] VGH setting from 10V to 20V 1 0 0 0 A1 A0 Control A[4:0] = 19h [POR] VGH setting from 10V to 20V 1 0 0 0 A4 A3 A2 A1 A0 0 1 0 0 0 A4 A3 A2 A1 A0	
0 0 0 0 0 0 1 1 Gate Driving voltage Control Set Gate driving voltage A[4:0] Set Gate driving voltage A[4:0] VGH A[4:0] VGH	er.
0 0 0 0 0 0 1 1 Gate Driving voltage TB = 1, scan from G299 to G0. 0 1 0 0 0 0 1 1 Gate Driving voltage Control Set Gate driving voltage A[4:0] = 19h [POR] VGH setting from 10V to 20V 0 1 0 0 0 A1 A0 Control	
0 0 0 0 0 0 0 1 1 Gate Driving voltage Control Set Gate driving voltage A[4:0] = 19h [POR] VGH setting from 10V to 20V 0 1 0 0 0 1 1 A1 A0 Gate Driving voltage Control Set Gate driving voltage A[4:0] = 19h [POR] VGH setting from 10V to 20V 4 4 4 4 4 4 4 6 0 1 0 0 0 4 4 6 6 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td>gate</td>	gate
0 0 0 0 0 0 1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	299
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
0 0 03 0 0 0 0 1 1 Gate Driving voltage Control Set Gate driving voltage A[4:0] = 19h [POR] VGH setting from 10V to 20V 0 1 0 0 0 A4 A3 A2 A1 A0 0 1 0 0 0 A4 A3 A2 A1 A0 0 1 0 0 0 A4 A3 A2 A1 A0 0 1 0 0 0 A4 A3 A2 A1 A0 Control Set Gate driving voltage A[4:0] = 19h [POR] VGH 03h 10 0Fh 16 03h 10 0Fh 16 05h 11 11h 17 06h 11.5 12h 17.4 07h 12 13h 18 18 18 18 18	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
VGH setting from 10V to 20V A[4:0] VGH setting from 10V to 20V A[4:0] VGH A[4:0] VGH 03h 10 0Fh 16 04h 10.5 10h 16.9 05h 11 11h 17 06h 11.5 12h 17.9 07h 12 13h 18	
A[4:0] VGH A[4:0] VGH 03h 10 0Fh 16 04h 10.5 10h 16.4 05h 11 11h 17 06h 11.5 12h 17.4 07h 12 13h 18	
04h 10.5 10h 16.4 05h 11 11h 17 06h 11.5 12h 17.4 07h 12 13h 18	1
05h 11 11h 17 06h 11.5 12h 17.5 07h 12 13h 18	
06h 11.5 12h 17.4 07h 12 13h 18	5
07h 12 13h 18	
	j –
)
09h 13 15h 19	_
0Ah 13.5 16h 19.5	1
0Bh 14 17h 20	
OCh 14.5 Other NA	
0Dh 15	
0Eh 15.5	

/₩#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Comm	nand		Description
0	0	04	0	0	0	0	0	1	0	0	Source	e Driving	voltage	Set Source driving voltage
0	1	-	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Contro			A[7:0] = 41h [POR], VSH1 at 15V
-				-	-		-			-				B[7:0] = A8h [POR], VSH2 at 5V.
0	1		B7	B ₆	B ₅	B4	В₃	B ₂	B1	B ₀				C[7:0] = 32h [POR], VSL at -15V
0	1		C7	C_6	C_5	C4	C ₃	C_2	C ₁	C ₀				
1[7]	/B[7]	= 1						ΔΓ	7]/B[7	$'^{1} = 0$	<u> </u>			C[7] = 0,
יןי 121	11/VS	– 1, 212 v	oltac		ttina	from	2 11/					e setting	from 0\/	VSL setting from -9V to -17V
	.8V		onag	50	ung		∠. 4 v		17V	0112	voltay	e setting	1011 30	
	.0 V B[7:0]	Veu	1/VSH2	A /D	8[7:0]	VSH1/	Veus		4/B[7:0]	1/5	SH1/VSH2	A/B[7:0]	VSH1/VSH2	2 C[7:0] VSL
	BEh		2.4		Fh	5.		-	23h	ve	9	3Ch	14	1Ah -9
	8Fh		2.5		0h	5			24h		9.2	3Dh	14.2	1Ch -9.5
	90h		2.6		1h	5			25h		9.4	3Eh	14.4	1611 -9.5 1Eh -10
	91h		2.7		2h	6			26h		9.6	3Fh	14.6	20h -10.5
	92h	:	2.8	В	3h	6	1		27h		9.8	40h	14.8	2011 -10.5 22h -11
	93h		2.9	В	4h	6	2		28h		10	41h	15	2211 -11 24h -11.5
	94h		3		5h	6.			29h		10.2	42h	15.2	2411 -11.3 26h -12
	95h		3.1		6h	6			2Ah		10.4	43h	15.4	
	96h		3.2		7h	6.			2Bh		10.6	44h	15.6	2Ah
	97h		3.3		8h	6			2Ch		10.8	45h	15.8	20h -13.5
	98h	_	3.4		9h	6			2Dh		11	46h	16	2Eh -14
	99h		3.5 3.6		Ah Bh	6. 6.			2Eh 2Fh		11.2 11.4	47h	16.2 16.4	
	9Ah 9Bh		3.0		Ch	0.		_	2Fn 30h		11.4	48h 49h	16.4	32h -15
	9Ch		3.8		Dh	7.			31h		11.8	4Ah	16.8	
	9Dh		3.9		Eh	7.			32h		11.0	4Bh	10:0	36h -16
	9Eh		4		Fh	7			33h		12.2	Other	NA	38h -16.5
	9Fh		4.1	С	:0h	7.			34h		12.4			3Ah -17
	40h		4.2	С	:1h	7.	5		35h		12.6			Other NA
	A1h		4.3		2h	7.			36h		12.8			
	A2h	_	4.4		:3h	7.			37h		13			
	A3h	-	4.5		4h	7.			38h		13.2			
	A4h		4.6		5h	7.			39h		13.4			_
	A5h		4.7		6h	3			3Ah		13.6			_
	A6h		4.8		7h	8.			3Bh		13.8			
	A7h A8h		4.9 5		:8h :9h	8.								
	48n 49h	_	5 5.1		9n Ah	8.								
	AAh	_	5.2	_	Bh	8								
	ABh		5.3	-	Ch	8	-							
	ACh		5.4		Dh	8								
	ADh		5.5		Eh	8								
	٩Eh		5.6	_	ther	N								

Com	man	d Tal	ole										
-	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable with Phase 1, Phase	e 2
0	1		1	A ₆	A ₅	A4	A ₃	A ₂	A ₁	A ₀	Control	and Phase 3 for soft start current an	
0	1		1	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	-	duration setting.	
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂			-	$\Lambda[7:0] > Coff start patting for Dhapp$	1
0	1		0	0	D5	D4	D3	D ₂	D1	D ₀	-	A[7:0] -> Soft start setting for Phase = 8Bh [POR]	I
0	I		0	0	D_5	D4	D3	D_2	D_1	D_0		B[7:0] -> Soft start setting for Phase	2
												= 9Ch [POR]	
												C[7:0] -> Soft start setting for Phase	3
												= 96h [POR] D[7:0] -> Duration setting	
												= 0Fh [POR]	
												Bit Description of each byte:	
												A[6:0] / B[6:0] / C[6:0]:	
												Diving Strength	
												Selection	
												000 1(Weakest)	
												001 2 010 3	
												011 4	
												100 5	
												101 6	
												110 7	
												111 8(Strongest)	
												Bit[3:0] Min Off Time Setting of G	DR
												0000	
												0011 NA	
												0100 2.6	
												0101 3.2	
												0110 3.9	
												0111 4.6	
												1000 5.4	
												1001 6.3	
												1010 7.3	
												1011 8.4	
												1100 9.8	
												1101 11.5 1110 13.8	
												1111 16.5	
												D[5:0]: duration setting of phase	
												D[5:4]: duration setting of phas D[3:2]: duration setting of phas	e 2
												D[1:0]: duration setting of phas	
												Bit[1:0] Duration of Phase [Approximation]	
												00 10ms	
												01 20ms	
												10 30ms	
												11 40ms	

		d Tal		DC	Dr	D4	D 2	D 2	D 4	D 2	Command	Description
		Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	0F	0	0	0	0	1	1	1	1	Gate scan start position	Set the scanning start position of the gate driver. The valid range is from 0 to 299.
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[8:0] = 000h [POR]
0	1		0	0	0	0	0	0	0	A ₈		When TB=0: SCN [8:0] = A[8:0] When TB=1: SCN [8:0] = 299 - A[8:0]
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sleep mode Control:
0	1		0	0	0	0	0	0	A ₁	A ₀		A[1:0] : Description
-				-		-			-	-		00 Normal Mode [POR]
												01 Enter Deep Sleep Mode 1
												11 Enter Deep Sleep Mode 2
												After this command initiated, the chip will
												enter Deep Sleep Mode, BUSY pad will
												keep output high. Remark:
												To Exit Deep Sleep mode, User required
												to send HWRESET to the driver
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode	Define data entry sequence
0	1		0	0	0	0	0	A ₂	0 A1	A ₀	setting	A[2:0] = 011 [POR]
0			0	U	Ŭ	U	Ŭ	712		70		
												A [1:0] = ID[1:0]
												Address automatic increment / decrement
												setting The setting of incrementing or
												decrementing of the address counter can
												be made independently in each upper and
												lower bit of the address.
												00 –Y decrement, X decrement,
												01 –Y decrement, X increment,
												10 –Y increment, X decrement, 11 –Y increment, X increment [POR]
												A[2] = AM
												Set the direction in which the address
												counter is updated automatically after data
												are written to the RAM.
												AM= 0, the address counter is updated in
												the X direction. [POR]
												AM = 1, the address counter is updated in the Y direction.
					1	1	1	1		1		I
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode
												During operation, BUSY pad will output high.
												Note: RAM are unaffected by this command.

Com	man	d Tal	ole									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection
												The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
					l	l				1		
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1		0	0	0	0	0	A ₂	A ₁	Ao		A[2:0] = 100 [POR] , Detect level at 2.3VA[2:0] : VCI level Detect $A[2:0]$ VCI level0112.2V1002.3V1012.4V1102.5V1112.6VOtherNA

	man D/C#		D7	D6	DE	D4	D 2	D 2	D 4	DA	Command	Description
				-	D5	D4	D3	D2	D1	D0	Command	Description
0	0	18	0 A7	0 A ₆	0 A5	1 A4	1 A ₃	0 A ₂	0 A ₁	0 A ₀	Temperature Sensor Control	Temperature Sensor Selection A[7:0] = 48h [POR], external temperatrure sensor A[7:0] = 80h Internal temperature sensor
0 0 0	0 1 1	1A	0 A ₁₁ A ₃	0 A ₁₀ A ₂	0 A ₉ A ₁	1 A ₈ A ₀	1 A ₇ 0	0 A ₆ 0	1 A5 0	0 A4 0	Temperature Sensor Control (Write to temperature register)	Write to temperature register. A[11:0] = 7FFh [POR]
		40	0	0	0	4	4	0	4	4	Tomporatura Concer	Dood from tomporative register
0 1 1	0 1 1	1B	0 A ₁₁ A ₃	0 A ₁₀ A ₂	0 A9 A1	1 A ₈ A ₀	1 A ₇ 0	0 A ₆ 0	1 A5 0	1 A ₄ 0	Temperature Sensor Control (Read from temperature register)	Read from temperature register.
	1		-			-	-	_	-	-	I	
0 0	0	1C	0 A7	0 A ₆	0 A5	1 A4	1 A3	1 A2	0 A1	0 A ₀	Temperature Sensor Control (Write	Write Command to External temperature sensor.
0 0	1 1		B7 C7	B ₆ C ₆	B ₅ C ₅	B4 C4	B ₃ C ₃	B ₂ C ₂	B1 C1	B ₀ C ₀	Command to External temperature sensor)	A[7:0] = 00h [POR], B[7:0] = 00h [POR], C[7:0] = 00h [POR],
												A[7:6] $A[7:6]$ Select no of byte to be sent00Address + pointer01Address + pointer + 1stparameter10Address + pointer + 1stparameter + 2nd pointer11AddressAddressA[5:0] - Pointer SettingB[7:0] - 1 st parameterC[7:0] - 2 nd parameterThe command required CLKEN=1.Refer to Register 0x22 for detail.After this command initiated, WriteCommand to external temperature sensostarts. BUSY pad will output high duringoperation.

./W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descriptio	on
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate D	isplay Update Sequence
												The Displa located at	y Update Sequence Option is R22h.
												operation.	will output high during User should not interrupt this to avoid corruption of panel
•		0.1	•	•									
0	0	21	0	0	1	0	0	0	0	1	Display Update Control 1	RAM conte A[7:0] = 00	ent option for Display Update
0	1		A7	A ₆	A5	A ₄	A ₃	A ₂	A ₁	A ₀		A[1.0] - 00	
												A[7:4] Red	RAM option
												0000	Normal
												0100	Bypass RAM content as 0
												1000	Inverse RAM content
												A[3:0] BW	RAM option
												0000	Normal
												0100	Bypass RAM content as 0
												1000	Inverse RAM content

	man			-	-	-				-	-	
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	22	0	0	1	0	0	0	1		Display Update Sequence Option: Enable the stage for Master Activation A[7:0]= FFh (POR)	
												Paramet
												(in Hex Enable Clock Signal, Then Enable ANALOG Then DISPLAY with DISPLAY Mode 1 C7 Then Disable ANALOG Then Disable OSC
												Enable Clock Signal, Then Enable ANALOG Then DISPLAY with DISPLAY Mode 2 CF Then Disable ANALOG Then Disable OSC
												Enable Clock Signal, Then Load LUT with DISPLAY Mode 1 90
												Enable Clock Signal, Then Load Temperature value from I2C Single Master Interface Then Load LUT with DISPLAY Mode 1
												Enable Clock Signal,
												Then Load LUT with DISPLAY Mode 2 98 Enable Clock Signal, 1 Then Load Temperature value from 12C 120
												Single Master Interface Do Then Load LUT with DISPLAY Mode 2
												Enable Clock Signal, Then Load LUT with DISPLAY Mode 1 To 91 Disable Clock Signal
												Enable Clock Signal, Then Load Temperature value from I2C Single Master Interface B1 Then Load LUT with DISPLAY Mode 1 To Disable Clock Signal
												Enable Clock Signal, Then Load LUT with DISPLAY Mode 2 To 99 Disable Clock Signal
												Enable Clock Signal, Then Load Temperature value from I2C Single Master Interface B9 Then Load LUT with DISPLAY Mode 2 To Disable Clock Signal
												Enable ANALOG Then DISPLAY with DISPLAY Mode 1 Then Disable ANALOG Then Disable OSC
												Enable ANALOG Then DISPLAY with DISPLAY Mode 2 Then Disable ANALOG Then Disable OSC
												To Enable Clock Signal 80 (CLKEN=1)
												To Enable Clock Signal, then Enable ANALOG C0 (CLKEN=1, ANALOGEN=1)
												Enable ANALOG Then DISPLAY with DISPLAY Mode 1 44
												Enable ANALOG 4C 4C
												To DISPLAY with DISPLAY Mode 1 04
												To DISPLAY with DISPLAY Mode 2 0C To Disable ANALOG, then Disable Clock Signal 03
												(CLKEN=0, ANALOGEN=0) To Disable Clock Signal (CLKEN=0) 01

Comr	nand	Tab	le									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	24	0	0	1	0	0	1	0	0	Write RAM (BW)	After this command, data entries will be written into the BW RAM until another command is written. Address pointers will advance accordingly For Write pixel: Content of Write RAM(BW) = 1 For Black pixel:
												Content of Write RAM(BW) = 0
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED)	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
	T			1	1	1					Ι	
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM [According to parameter of Register 41h to select reading RAM(BW) / RAM(RED)], until another command is written. Address pointers will advance accordingly.
												The 1 st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM
0	1		A ₇	A ₆	A5	A4	A3	A ₂	A ₁	Ao		sensing mode and reading acquired. A[6]=1, Normal Mode A[6]=0, Reserve A[3:0] = 09h, duration = 10s. VCOM sense duration = Setting + 1 Seconds
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.

0 0 2C 0 0 1 A 0 1 A 0 0 2D 0 1 1 A 1 1 A 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C	D7 D6 0 0 A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6 G7 G6	D5 1 A₅ 1 A₅ 5 5 5 F₅	0 A4 0 A4 A4 B4 C4 D4 E4	D3 1 A3 Image: Comparison of the second	D2 1 A2 Image: Comparison of the second	0 A1 0 A1 B1 C1 D1 E1	D0 0 A0 A0	Command Write VCOM register	A[7:0] = A[7:0] 08h 0Ch 10h 14h 18h 1Ch 20h 24h 20h 24h 28h 2Ch 30h 34h 38h 3Ch 40h Read F Option: 1. A[7:0] 2. B[7:0]	COM registe 00h [POR] VCOM -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 Register stor D]: VCOM C	A[7:0] 44h 48h 50h 54h 58h 5Ch 60h 64h 68h 6Ch 70h 74h 78h Other red in O	
0 1 A 0 1 A 0 0 2D C 1 1 A 1 1 B 1 1 C 1 1 C 1 1 C 1 1 E 1 1 E 1 1 E 1 1 E 1 1 E 1 1 G	A7 A6 0 0 A7 A6 0 0 A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	A₅ 1 A₅ B₅ C₅ D₅ E₅	A4 0 A4 B4 C4 D4	A ₃ 1 A ₃ B ₃ C ₃ D ₃	A ₂ 1 A ₂ B ₂ C ₂ D ₂	A1 0 A1 B1 C1 D1	A ₀ A ₀ A ₀ A ₀ B ₀ C ₀	OTP Register Read for	A[7:0] = A[7:0] 08h 0Ch 10h 14h 18h 1Ch 20h 24h 20h 24h 28h 2Ch 30h 34h 38h 3Ch 40h Read F Option: 1. A[7:0] 2. B[7:0]	00h [POR] VCOM -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 Register stor D]: VCOM C e A) D]: VCOM F	A[7:0] 44h 48h 50h 54h 58h 5Ch 60h 64h 68h 6Ch 70h 74h 78h Other red in O	VCOM -1.7 -1.8 -1.9 -2 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6 -2.7 -2.8 -2.9 -3 NA TP for Display ection (R37, (R2C)
0 0 2D 0 1 1 A 1 1 B 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C	0 0 A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	$ \begin{array}{c} 1\\ A_5\\ B_5\\ C_5\\ D_5\\ E_5 \end{array} $	0 A4 B4 C4 D4	1 A3 B3 C3 D3	1 A2 B2 C2 D2	0 A1 B1 C1 D1	1 A ₀ B ₀ C ₀		08h 0Ch 10h 14h 18h 1Ch 20h 24h 28h 2Ch 30h 34h 38h 3Ch 40h Read F Option: 1. A[7:0 Byte 2. B[7:0	-0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 Register stor D]: VCOM C e A) D]: VCOM F	44h 48h 4Ch 50h 54h 58h 5Ch 60h 64h 68h 6Ch 70h 74h 78h Other red in O	-1.7 -1.8 -1.9 -2 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6 -2.7 -2.8 -2.9 -3 NA TP for Display ection (R37, (R2C)
1 1 A 1 1 B 1 1 B 1 1 C 1 1 D 1 1 E 1 1 F 1 1 G	A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	A₅ B₅ C₅ D₅ E₅	A4 B4 C4 D4	A₃B₃C₃D₃	A ₂ B ₂ C ₂ D ₂	A1 B1 C1 D1	A ₀ B ₀ C ₀		0Ch 10h 14h 18h 1Ch 20h 24h 28h 2Ch 30h 34h 38h 3Ch 40h Read F Option: 1. A[7:(Byte 2. B[7:(-0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 Register stor D]: VCOM C e A) D]: VCOM F	48h 4Ch 50h 54h 58h 5Ch 60h 64h 68h 6Ch 70h 74h 78h Other red in O	-1.8 -1.9 -2 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6 -2.7 -2.8 -2.9 -3 NA TP for Display ection (R37, (R2C)
1 1 A 1 1 B 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 F 1 1 F 1 1 C	A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	A₅ B₅ C₅ D₅ E₅	A4 B4 C4 D4	A₃B₃C₃D₃	A ₂ B ₂ C ₂ D ₂	A1 B1 C1 D1	A ₀ B ₀ C ₀		10h 14h 18h 20h 24h 28h 2Ch 30h 34h 38h 3Ch 40h Read F Option: 1. A[7:(Byte 2. B[7:(-0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 Register stor D]: VCOM C e A) D]: VCOM F	4Ch 50h 54h 58h 5Ch 60h 64h 68h 6Ch 70h 74h 78h Other red in O	-1.9 -2 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6 -2.7 -2.8 -2.9 -3 NA TP for Display ection (R37, (R2C)
1 1 A 1 1 B 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 F 1 1 F 1 1 C	A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	A₅ B₅ C₅ D₅ E₅	A4 B4 C4 D4	A₃B₃C₃D₃	A ₂ B ₂ C ₂ D ₂	A1 B1 C1 D1	A ₀ B ₀ C ₀		14h 18h 1Ch 20h 24h 28h 2Ch 30h 34h 38h 3Ch 40h Read F Option: 1. A[7:0 Byte 2. B[7:0	-0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 Register stor D]: VCOM C e A) D]: VCOM F	50h 54h 58h 5Ch 60h 64h 68h 6Ch 70h 74h 78h Other red in O	-2 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6 -2.7 -2.8 -2.9 -3 NA TP for Display ection (R37, (R2C)
1 1 A 1 1 B 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C	A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	A₅ B₅ C₅ D₅ E₅	A4 B4 C4 D4	A₃B₃C₃D₃	A ₂ B ₂ C ₂ D ₂	A1 B1 C1 D1	A ₀ B ₀ C ₀		18h 1Ch 20h 24h 28h 2Ch 30h 34h 38h 3Ch 40h Read F Option: 1. A[7:0 Byte 2. B[7:0	-0.6 -0.7 -0.8 -0.9 -1 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 Register stor D]: VCOM C e A) D]: VCOM F	54h 58h 5Ch 60h 64h 68h 6Ch 70h 74h 78h Other red in O	-2.1 -2.2 -2.3 -2.4 -2.5 -2.6 -2.7 -2.8 -2.9 -3 NA TP for Display ection (R37, (R2C)
1 1 A 1 1 B 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C	A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	A₅ B₅ C₅ D₅ E₅	A4 B4 C4 D4	A₃B₃C₃D₃	A ₂ B ₂ C ₂ D ₂	A1 B1 C1 D1	A ₀ B ₀ C ₀		1Ch 20h 24h 28h 2Ch 30h 34h 38h 3Ch 40h Read F Option: 1. A[7:(Byte 2. B[7:(-0.7 -0.8 -0.9 -1 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 Register stor D]: VCOM C e A) D]: VCOM F	58h 5Ch 60h 64h 68h 6Ch 70h 74h 78h Other red in O	-2.2 -2.3 -2.4 -2.5 -2.6 -2.7 -2.8 -2.9 -3 NA
1 1 A 1 1 B 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C	A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	A₅ B₅ C₅ D₅ E₅	A4 B4 C4 D4	A₃B₃C₃D₃	A ₂ B ₂ C ₂ D ₂	A1 B1 C1 D1	A ₀ B ₀ C ₀		20h 24h 28h 2Ch 30h 34h 38h 3Ch 40h Read F Option: 1. A[7:(Byte 2. B[7:(-0.8 -0.9 -1 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 Register stor D]: VCOM C e A) D]: VCOM F	5Ch 60h 64h 68h 6Ch 70h 74h 78h Other red in O	-2.3 -2.4 -2.5 -2.6 -2.7 -2.8 -2.9 -3 NA TP for Display ection (R37, (R2C)
1 1 A 1 1 B 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C	A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	A₅ B₅ C₅ D₅ E₅	A4 B4 C4 D4	A₃B₃C₃D₃	A ₂ B ₂ C ₂ D ₂	A1 B1 C1 D1	A ₀ B ₀ C ₀		24h 28h 2Ch 30h 34h 38h 3Ch 40h Read F Option: 1. A[7:0 Byte 2. B[7:0	-0.9 -1 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 Register stor D]: VCOM C e A) D]: VCOM F	60h 64h 68h 6Ch 70h 74h 78h Other red in O	-2.4 -2.5 -2.6 -2.7 -2.8 -2.9 -3 NA TP for Display ection (R37, (R2C)
1 1 A 1 1 B 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C	A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	A₅ B₅ C₅ D₅ E₅	A4 B4 C4 D4	A₃B₃C₃D₃	A ₂ B ₂ C ₂ D ₂	A1 B1 C1 D1	A ₀ B ₀ C ₀		28h 2Ch 30h 34h 38h 3Ch 40h Read F Option: 1. A[7:0 Byte 2. B[7:0	-1 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 Register stor D]: VCOM C e A) D]: VCOM F	64h 68h 6Ch 70h 74h 78h Other red in O	-2.5 -2.6 -2.7 -2.8 -2.9 -3 NA TP for Display ection (R37, (R2C)
1 1 A 1 1 B 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C	A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	A₅ B₅ C₅ D₅ E₅	A4 B4 C4 D4	A₃B₃C₃D₃	A ₂ B ₂ C ₂ D ₂	A1 B1 C1 D1	A ₀ B ₀ C ₀		2Ch 30h 34h 38h 3Ch 40h Read F Option: 1. A[7:(Byte 2. B[7:(-1.1 -1.2 -1.3 -1.4 -1.5 -1.6 Register stor D]: VCOM C e A) D]: VCOM F	68h 6Ch 70h 74h 78h Other red in O	-2.6 -2.7 -2.8 -2.9 -3 NA TP for Display ection (R37, (R2C)
1 1 A 1 1 B 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 F 1 1 F 1 1 C	A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	A₅ B₅ C₅ D₅ E₅	A4 B4 C4 D4	A₃B₃C₃D₃	A ₂ B ₂ C ₂ D ₂	A1 B1 C1 D1	A ₀ B ₀ C ₀		30h 34h 38h 3Ch 40h Read F Option: 1. A[7:(Byte 2. B[7:(-1.2 -1.3 -1.4 -1.5 -1.6 Register stor D]: VCOM C e A) D]: VCOM F	6Ch 70h 74h 78h Other red in O ⁻ DTP Sele	-2.7 -2.8 -2.9 -3 NA TP for Display ection (R37, (R2C)
1 1 A 1 1 B 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C	A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	A₅ B₅ C₅ D₅ E₅	A4 B4 C4 D4	A₃B₃C₃D₃	A ₂ B ₂ C ₂ D ₂	A1 B1 C1 D1	A ₀ B ₀ C ₀		34h 38h 3Ch 40h Read F Option: 1. A[7:0 Byte 2. B[7:0	-1.3 -1.4 -1.5 -1.6 Register stor D]: VCOM C e A) D]: VCOM F	70h 74h 78h Other red in O DTP Sele	-2.8 -2.9 -3 NA TP for Display ection (R37, (R2C)
1 1 A 1 1 B 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C	A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	A₅ B₅ C₅ D₅ E₅	A4 B4 C4 D4	A₃B₃C₃D₃	A ₂ B ₂ C ₂ D ₂	A1 B1 C1 D1	A ₀ B ₀ C ₀		38h 3Ch 40h Read F Option: 1. A[7:0 Byte 2. B[7:0	-1.4 -1.5 -1.6 Register stor D]: VCOM C e A) D]: VCOM F	74h 78h Other red in O DTP Sele Register (-2.9 -3 NA TP for Display ection (R37, (R2C)
1 1 A 1 1 B 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 F 1 1 F 1 1 C	A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	A₅ B₅ C₅ D₅ E₅	A4 B4 C4 D4	A₃B₃C₃D₃	A ₂ B ₂ C ₂ D ₂	A1 B1 C1 D1	A ₀ B ₀ C ₀		3Ch 40h Read F Option: 1. A[7:(Byte 2. B[7:(-1.5 -1.6 Register stor D]: VCOM C e A) D]: VCOM F	78h Other red in O DTP Sele Register (-3 NA IP for Display ection (R37, (R2C)
1 1 A 1 1 B 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 F 1 1 F 1 1 C	A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	A₅ B₅ C₅ D₅ E₅	A4 B4 C4 D4	A₃B₃C₃D₃	A ₂ B ₂ C ₂ D ₂	A1 B1 C1 D1	A ₀ B ₀ C ₀		40h Read F Option: 1. A[7:0 Byte 2. B[7:0	-1.6 Register stor D]: VCOM C e A) D]: VCOM F	Other red in OT DTP Sele Register (NA TP for Display ection (R37, (R2C)
1 1 A 1 1 B 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 F 1 1 F 1 1 C	A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	A₅ B₅ C₅ D₅ E₅	A4 B4 C4 D4	A₃B₃C₃D₃	A ₂ B ₂ C ₂ D ₂	A1 B1 C1 D1	A ₀ B ₀ C ₀		Read F Option: 1. A[7:0 Byte 2. B[7:0	Register stor D]: VCOM C e A) D]: VCOM F	red in O DTP Sele Register (TP for Display ection (R37, (R2C)
1 1 A 1 1 B 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C	A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	A₅ B₅ C₅ D₅ E₅	A4 B4 C4 D4	A₃B₃C₃D₃	A ₂ B ₂ C ₂ D ₂	A1 B1 C1 D1	A ₀ B ₀ C ₀		Option: 1. A[7:0 Byte 2. B[7:0	: 0]: VCOM C e A) 0]: VCOM F	OTP Sele Register (ection (R37, (R2C)
1 1 A 1 1 B 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C	A7 A6 B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	A₅ B₅ C₅ D₅ E₅	A4 B4 C4 D4	A₃B₃C₃D₃	A ₂ B ₂ C ₂ D ₂	A1 B1 C1 D1	A ₀ B ₀ C ₀		Option: 1. A[7:0 Byte 2. B[7:0	: 0]: VCOM C e A) 0]: VCOM F	OTP Sele Register (ection (R37, (R2C)
1 1 B 1 1 C 1 1 C 1 1 E 1 1 E 1 1 F 1 1 G	B7 B6 C7 C6 D7 D6 E7 E6 F7 F6	B5 C5 D5 E5	B4 C4 D4	B ₃ C ₃ D ₃	B ₂ C ₂ D ₂	B ₁ C ₁ D ₁	B ₀ C ₀	Display Option - - -	1. A[7:0 Byte 2. B[7:0	0]: VCOM (e A) 0]: VCOM F	Register ((R2C)
1 1 C 1 1 D 1 1 E 1 1 F 1 1 G	C7 C6 D7 D6 E7 E6 F7 F6	C₅ D₅ E₅	C4 D4	C3 D3	C ₂ D ₂	C1 D1	C ₀	-	Byte 2. B[7:0	e A) 0]: VCOM F	Register ((R2C)
1 1 D 1 1 E 1 1 F 1 1 G	D7 D6 E7 E6 F7 F6	C₅ D₅ E₅	D4	D ₃	D ₂	D ₁	-	-	2. B[7:0	0]: ŃCOM F		
1 1 D 1 1 E 1 1 F 1 1 G	D7 D6 E7 E6 F7 F6	D₅ E₅	D4	D ₃	D ₂	D ₁	-	-				
1 1 E 1 1 F 1 1 G	E7 E6 F7 F6	E₅				-	D 0					
1 1 F 1 1 G	F ₇ F ₆		□□□4	⊏3	E 2		E ₀	-		e B and Byt		
1 1 G		F 5	_	_				_		0]~H[7:0]: V		
	G7 G6		F ₄	F ₃	F ₂	F ₁	F ₀	_	(R3	7, Byte F a	nd Byte (G) [2 bytes]
		G5	G4	G ₃	G ₂	G1	G ₀	_				
	H ₇ H ₆	H ₅	H ₄	H ₃	H ₂	H₁	H ₀					
		.	_	.	.							
	0 0	1	0	1	1	1		User ID Read		0 Byte User		ed in OTP: , Byte A and
1 1 A	A ₇ A ₆	A 5		A ₃	A ₂	A ₁	A ₀			J) [10 byte		, byte A and
1 1 B	B7 B6	B ₅	B4	B ₃	B ₂	B1	B ₀		2910	o) [10 b]a	50]	
1 1 C	C7 C6	C5	C4	C ₃	C2	C1	Co					
1 1 D	D ₇ D ₆	D ₅	D4	D ₃	D ₂	D ₁	D_0					
1 1 E	E7 E6	Еs	E4	E ₃	E ₂	E1	E ₀					
1 1 F	F7 F6	F ₅	F ₄	F ₃	F_2	F ₁	F ₀					
	G7 G6	G ₅		G ₃	G ₂	G ₁	G					
	H7 H6	H ₅	H ₄	H ₃	H ₂	H ₁	H₀					
	I7 I6	15	4	l3	l ₂							
1 1 J;	$J_7 J_6$	J_5	J_4	J_3	J_2	J_1	J_0					

omr	nanc	l Tab	le									
R/W #	D/C #	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
# 0	# 0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x21]
Ū	•		•	•		Ŭ	•	•				A[5]: HV Ready Detection flag [POR=1]
1	1		0	0	A ₅	A ₄	0	0	A ₁	A ₀	-	0: Ready
'	'		U	0	10	774	Ŭ	0		70		1: Not Ready
												A[4]: VCI Detection flag [POR=0] 0: Normal
												1: VCI lower than the Detect level
												A[3]: [POR=0]
												A[2]: Busy flag [POR=0]
												0: Normal
												1: BUSY
												A[1:0]: Chip ID [POR=01] Remark:
												A[5] and A[4] status are not valid after
												RESET, they need to be initiated by
												command 0x14 and command 0x15
												respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting
												The contents should be written into RAM
												before sending this command.
												The command required CLKEN=1.
												Refer to Register 0x22 for detail.
												BUSY pad will output high during
												operation.
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during
												operation.
_												
0 0	0	32	0 A ₇	0 A ₆	1 A5	1 A4	0 A3	0 A2	1 A1	0 A ₀	Write LUT register	Write LUT register from MCU interface [70 bytes], which contains the content of
0	1		B7	B ₆	B ₅	A4 B4	B3	B ₂	B ₁	B ₀	1	VS [nX-LUT], TP #[nX], RP#[n]).
0	1		D7	D6	D5	D4	D3	D2	D1	D0		Refer to Session 6.7 Waveform Setting
0	1		•	•	•	•	•	•	•	•	-	
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command
												BUSY pad will output high during
												operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
_	-		-					-				A[15:0] is the CRC read out value
	1		A ₁₅	A ₁₄	A ₁₃	A ₁₂		A ₁₀	A ₉	A ₈		
1	1		A7	A_6	A_5	A4	A ₃	A ₂	A ₁	A ₀		

Comr	nand	l Tab	le									
R/W #	D/C #	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write OTP selection	Write the OTP Selection:
0	1	07	0 A7	0	0	0	0	0	0	0		A[7]=1 spare VCOM OTP selection
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		B[7:0]~E[7:0] reserved
0	1		C7	C ₆	C5	C4	C ₃	C ₂	C ₁	C ₀		F[7:0]~G[7:0] module ID /waveform version.
0	1		D7	D ₆	D ₅	D4	D ₃	D ₂	D ₁	Do	-	
0	1		E7	E ₆	E5	E4	Eз	E ₂	E1	Еo		
0	1		F7	F ₆	F5	F4	F₃	F ₂	F ₁	F٥		
0	1		G7	G ₆	G ₅	G4	G ₃	G ₂	G_1	G ₀		
1	0	38	0	0	1	1	1	0	0	0	-	Write Register for User ID
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	ID	A[7:0]]~J[7:0]: UserID [10 bytes]
1	1		B7	B ₆	B ₅	B 4	B ₃	B ₂	B1	B ₀		
1	1		C7	C ₆	C5	C4	C ₃	C ₂	C1	C ₀	-	
1	1		D7	D ₆	D5	D4	D ₃	D2	D1	D ₀		
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		
1	1		F ₇	F ₆	F₅	F ₄	F₃	F ₂	F ₁	F₀	-	
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		
1	1		H ₇	H ₆	H ₅	H4 I4	H ₃	H ₂	H ₁	H ₀	-	
1	1	-	I ₇ J7	Ι ₆ J ₆	Ι ₅ J ₅	14 J4	J ₃	I_2 J_2	Ι ₁ J1	J ₀	-	
1	I		J 7	J 6	J 5	J 4	J 3	J2	J1	J 0		
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage Remark: User is required to EXACTLY
												follow the reference code sequences

		ommand Table											
R/W D/C Hay DZ DC D5 D4 D2 D2 D4 D0 Command										Description			
#	#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	3A	0	0	1	1	1	0	1	0	Set dummy line pe	riod Set number of dummy line period	
0	1		0	A ₆	A 5	A4	A ₃	A ₂	A ₁	A ₀		A[6:0] = 2Ch [POR]	
												Available setting 0 to 107	
												Available setting 0 to 127.	
0	0	3B	0	0	1	1	1	0	1	1	Set Gate line widt	n Set Gate line width (TGate)	
0	1		0	0	0	0	A ₃	A ₂	A ₁	A ₀		A[3:0] = 1010 [POR]	
												Remark: Default value will give 50H	
												Frame frequency under 44 dummy l pulse setting.	ine
												puise setting.	
					Re	esolut	ion:			4(00x300		
					F	rame	Freq		y [Hz] [Parameter of 0x3A	Parameter of 0x3B	
							1				0x79	0x0E	
							20				0x10	0x0E	
							2				0x26	0x0D	
					-		30				0x4E	0x0C	
							3				0x18	0x0C	
							4(0x43	0x0B	
							4				0x1A	0x0B	
							50				0x2C	0x0A 0x0A	
						55 60					0x0D 0x21	0x09	
						65					0x21 0x07	0x09	
					-	70					0x07 0x28	0x08	
						75 80					0x11	0x08	
											0x2F	0x07	
							8				0x1A	0x07	
							90				0x08	0x07	
							9				0x32	0x06	
							10	0			0x21	0x06	
							10)5			0x11	0x06	
							11				0x03	0x06	
							11				0x22	0x05	
					-		12				0x14	0x05	
							12				0x07	0x05	
							13				0x24	0x04	
							14				0x18	0x04	
							<u>14</u> 15				0x0D 0x03	0x04 0x04	
							15				0x03 0x27	0x04 0x03	
							16				0x1C	0x03	
							16				0x10	0x03	
							17				0x09	0x03	
							17				0x00	0x03	
							18				0x2F	0x02	
							18				0x25	0x02	
							19				0x1C	0x02	
							19				0x14	0x02	
							20	0			0x0C	0x02	
Dom	معادد	From	- rot	++	ina d	epen	de er		Jutio	•			

Remark: Frame rate setting depends on resolution.

Com	Command Table											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0 0	0 1	3C	0 A7	0 A ₆	1 A5	1 A4	1 0	1 0	0 A ₁	0 A ₀	Border Waveform Control	Select border waveform for VBD A[7:0] = C0h [POR], set VBD as HIZ.
												A [7:6] :Select VBD option
												A[7:6] Select VBD as
												00 GS Transition, Defined in A[1:0]
												01 Fix Level, Defined in A[5:4]
												10 VCOM
												11[POR] HiZ
												A [5:4] Fix Level Setting for VBD
												A[5:4] VBD level
												00[POR] VSS
												01 VSH1
												10 VSL 11 VSH2
												V3112
												A [1:0] GS Transition setting for VBD
												A[1:0] VBD Transition
												00[POR] LUT0
												01 LUT1
												10 LUT2 11 LUT3
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM Option
0	1		0	0	0	0	0	0	0	A ₀		A[0]= 0 [POR]
												0 : Read RAM corresponding to 24h 1 : Read RAM corresponding to 26h
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the start/end positions of the
0	1	-+	0	0	0 A5	0 A4	0 A3	A ₂	0 A1		Start / End position	window address in the X direction by an
0	1		0	0	B ₅	B4	B ₃	B ₂	B ₁	B ₀		address unit for RAM
												A[5:0]: XSA[5:0], XStart, 00h [POR]
												B[5:0]: XEA[5:0], XEnd, 31h [POR]
					l	l				l	1	1
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the start/end positions of the window address in the X direction by an
0	1		A7	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Start / End position	window address in the Y direction by an address unit for RAM
0	1		0	0	0	0	0	0	0	A ₈		
0	1		B ₇	B ₆	B ₅	B4	B ₃	B ₂	B ₁	B ₀	-	A[8:0]: YSA[8:0], YStart, 000h [POR]
0	1		0	0	0	0	0	0	0	B ₈		B[8:0]: YEA[8:0], YEnd, 12Bh [POR]

Com	mane	d Tal	ole														
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on				
0	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM	Auto Write	e RED RA	M for Reg	ular Pattern		
0) 1 /		A7	A7 A6	A ₆	A ₅	A ₄	0	A ₂	A ₁	A ₀	for Regular Pattern	A[7:0] = 00h [POR]				
												A[7]: The 1st step value, POR = 0 A[6:4]: Step Hieght, POR= 000 Step of alter RAM in Y-direction accord to Gate		0			
												A[6:4]	Height	A[6:4]	Height		
												000	8	100	128		
												001	16	101	256		
												010	32	110	300		
												011	64	111	NA		
												A[2:0]: Step Step of all to Source A[2:0] 000	ter RAM ir		on according Width 128		
												001	16	101	256		
												010	32	110	400		
1												011	64	111	NA		
0	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM	operation.		V for Reg	ular Pattern		
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	A ₀	for Regular Pattern	A[7:0] = 00h [POR]					
												Step of all	ep Hieght,	POR= 00			
												to Gate A[6:4]	Height	A[6:4]	Height		
												000	8	100	128		
												000	16	100	256		
												010	32	110	300		
												011	64	111	NA		
												A[2:0]: Ste Step of all to Source	ter RAM ir) on according		
												A[2:0]	Width	A[2:0]	Width		
												000	8	100	128		
												001	16	101	256		
												010	32	110	400		
												011	64	111	NA		
												During op high.	eration, B	USY pad v	will output		

Con	command Table														
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description			
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initial settings for the RAM X			
0	1		0	0	A ₅	A4	A ₃	A ₂	A ₁	A ₀	counter	address in the address counter (AC) A[5:0]: 00h [POR].			
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initial settings for the RAM Y			
0	1	TI	0 A7	A6	A5	A4	A3	A2	A1	A0	counter	address in the address counter (AC)			
0	1		0	0	0	0	0	0	0	A8	-	A[8:0]: 000h [POR].			
U	1		U	U	U	U	U	U	U	70					
0	1	74	0	1	1	1	0	1	0	0	Set Analog Block	A[7:0]: 54h			
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Control				
												-			
0	1	7E	0	1	1	1	1	1	1	0	Set Digital Block	A[7:0]: 3Bh			
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Control				
				1	1						1				
0	1	7F	0	1	1	1	1	1	1	1	NOP	This command is an empty command; it does not have any effect on the display module. However it can be used to terminate Frame Memory Write or Read Commands.			

8 COMMAND DESCRIPTION

8.1 Driver Output Control (01h)

This triple byte command has multiple configurations and each bit setting is described as follows:

R/W	DC	IB7					IB2		IB0
W	1	MUX7	MUX6	MUX5	MUX4	MUX3	MUX2	MUX1	MUX0
PC	POR		0	1	1	1	1	1	1
W	1								MUX8
PC	POR								1
W	1						GD	SM	TB
PC)R						0	0	0

MUX[8:0]: Specify number of lines for the driver: MUX[8:0] + 1. Multiplex ratio (MUX ratio) from 16 MUX to 300MUX.

GD: Selects the 1st output Gate

This bit is made to match the GATE layout connection on the panel. It defines the first scanning line.

SM: Change scanning order of gate driver.

When SM is set to 0, left and right interlaced is performed. When SM is set to 1, no splitting odd / even of the GATE signal is performed, Output pin assignment sequence is shown as below (for 300 MUX ratio):

	SM=0	SM=0	SM=1	SM=1
Driver	GD=0	GD=1	GD=0	GD=1
G0	ROW0	ROW1	ROW0	ROW150
G1	ROW1	ROW0	ROW150	ROW0
G2	ROW2	ROW3	ROW1	ROW151
G3	ROW3	ROW2	ROW151	ROW1
:	:	:	:	:
G148	ROW148	ROW149	ROW74	ROW224
G149	ROW149	ROW148	ROW224	ROW74
G150	ROW150	ROW151	ROW75	ROW225
G151	ROW151	ROW150	ROW225	ROW75
:	:	:	:	:
G296	ROW296	ROW297	ROW148	ROW298
G297	ROW297	ROW296	ROW298	ROW148
G298	ROW298	ROW299	ROW149	ROW299
G299	ROW299	ROW298	ROW299	ROW149

See "Scan Mode Setting" on next page.

TB: Change scanning direction of gate driver.

This bit defines the scanning direction of the gate for flexible layout of signals in module either from up to down (TB = 0) or from bottom to up (TB = 1).

Figure 8-1: Output pin assignment on different Scan Mode Setting

P 36/48
8.2 Gate Scan Start Position (0Fh)

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	W 1		SCN6	SCN5	SCN4	SCN3	SCN2	SCN1	SCN0
PC	POR		0	0	0	0	0	0	0
w	1	0	0	0	0	0	0	0	SCN8
PC	POR		0	0	0	0	0	0	0

This command is to set Gate Start Position for determining the starting gate of display RAM by selecting a value from 0 to 299. Figure 8-2 shows an example using this command of this command when MUX ratio= 300 and MUX ratio= 150 "ROW" means the graphic display data RAM row.

[MUX ratio (01h) = 12Bh	MUX ratio (01h) = 095h	MUX ratio (01h) = 095h
GATE Pin	Gate Start Position (0Fh)	Gate Start Position (0Fh)	Gate Start Position (0Fh)
	= 000h	= 000h	= 04Bh
G0	ROW0	ROW0	-
G1	ROW1	ROW1	-
G2	ROW2	ROW2	-
G3	ROW3	ROW3	-
:	:	:	:
:	:	:	:
G73	:	:	-
G74		:	-
G75		:	ROW75
G76		:	ROW76
:		:	:
:	:	:	:
G148	ROW148	ROW148	:
G149	ROW149	ROW149	:
G150	ROW150	-	:
G151	ROW151	-	:
:		:	:
	:	:	:
G223	:	:	ROW223
G224	:	:	ROW224
G225	:	:	-
G226	:	:	-
	:	:	:
:	:	:	:
G296	ROW296	-	-
G297	ROW297	-	-
G298	ROW298	-	-
G299	ROW299	-	-
Display Example	SOLOMON SYSTECH		SOLOMON

8.3 Data Entry Mode Setting (11h)

This command has multiple configurations and each bit setting is described as follows:

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1						AM	ID1	ID0
Р	POR		0	0	0	0	0	1	1

ID[1:0]: The address counter is automatically incremented by 1, after data is written to the RAM when ID[1:0] = "01". The address counter is automatically decremented by 1, after data is written to the RAM when ID[1:0] = "00". The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. The direction of the address when data is written to the RAM is set by AM bits.

AM: Set the direction in which the address counter is updated automatically after data are written to the RAM. When AM = "0", the address counter is updated in the X direction. When AM = "1", the address counter is updated in the Y direction. When window addresses are selected, data are written to the RAM area specified by the window addresses in the manner specified with ID[1:0] and AM bits.

The pixel sequence is defined by the ID [0],

8.4 Set RAM X - Address Start / End Position (44h)

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	W 1			XSA5	XSA4	XSA3	XSA2	XSA1	XSA0
POR		0	0	0	0	0	0	0	0
W	1			XEA5	XEA4	XEA3	XEA2	XEA1	XEA0
PC	DR	0	0	1	1	0	0	0	1

XSA[5:0]/XEA[5:0]: Specify the start/end positions of the window address in the X direction by 8 times address unit. Data is written to the RAM within the area determined by the addresses specified by XSA [5:0] and XEA [5:0]. These addresses must be set before the RAM write.

It allows on XEA [5:0] \leq XSA [5:0]. The settings follow the condition on 00h \leq XSA [5:0], XEA [5:0] \leq 31h. The windows is followed by the control setting of Data Entry Setting (R11h)

8.5 Set RAM Y - Address Start / End Position (45h)

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	1	YSA7	YSA6	YSA5	YSA4	YSA3	YSA2	YSA1	YSA0
PC	POR		0	0	0	0	0	0	0
w	1	0	0	0	0	0	0	0	YSA8
PC	DR	0	0	0	0	0	0	0	0
w	1	YEA7	YEA6	YEA5	YEA4	YEA3	YEA2	YEA1	YEA0
PC	DR	0	0	1	0	1	0	1	1
w	1	0	0	0	0	0	0	0	YEA8
PC	DR	0	0	0	0	0	0	0	1

YSA[8:0]/YEA[8:0]: Specify the start/end positions of the window address in the Y direction by an address unit. Data is written to the RAM within the area determined by the addresses specified by YSA [8:0] and YEA [8:0]. These addresses must be set before the RAM write.

It allows YEA [8:0] \leq YSA [8:0]. The settings follow the condition on 00h \leq YSA [8:0], YEA [8:0] \leq 12Bh. The windows is followed by the control setting of Data Entry Setting (R11h)

8.6 Set RAM Address Counter (4Eh-4Fh)

Reg	# R/	W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
4Eh	v	V	1			XAD5	XAD4	XAD3	XAD2	XAD1	XAD0
		POR		0	0	0	0	0	0	0	0
	V	V	1	YAD7	YAD6	YAD5	YAD4	YAD3	YAD2	YAD1	YAD0
		POR		0	0	0	0	0	0	0	0
4Fh	v	V	1								YAD8
		POR									0

XAD[5:0]: Make initial settings for the RAM X address in the address counter (AC). **YAD[8:0]:** Make initial settings for the RAM Y address in the address counter (AC).

After RAM data is written, the address counter is automatically updated according to the settings with AM, ID bits and setting for a new RAM address is not required in the address counter. Therefore, data is written consecutively without setting an address. The address counter is not automatically updated when data is read out from the RAM. RAM address setting cannot be made during the standby mode. The address setting should be made within the area designated with window addresses which is controlled by the Data Entry Setting (R11h) {AM, ID[1:0]} ; RAM Address XStart / XEnd Position (R44h) and RAM Address Ystart /Yend Position (R45h). Otherwise undesirable image will be displayed on the Panel.

9 Typical Operating Sequence

9.1 Normal Display

Sequence	Action by	Command	Action Description	Remark
1	User	-	Power on (VCI supply);	
2	User	-	HW Reset	
	IC		After HW reset, the IC will be ready for command input	
	User	C 12	Command: SW Reset	
	IC		After SW reset, the IC will have	
			Registers load with POR value	
			VCOM register loaded with OTP value	BUSY = H
	User		IC enter idle mode Wait until BUSY = L	
3	User	-	Send initial code to driver including setting of	
Ī	User	- C 74	Command: Set Analog Block Control	
	USEI	D 54	Command. Set Analog Block Control	
	User	C 7E	Command: Set Digital Block Control	
		D 3B		
	User	C 01	Command: Driver Output Control	
			(MUX, Source gate scanning direction)	
	User	C 3A	Command: Set dummy line period	
	User	C 3B	Command: Set Gate line width	
	User	C 3C	Command: Border waveform control	
ŀ		-	Data operations for Black White	
	User	C 11	Command: Data Entry mode setting	
L	User	C 44	Command: RAM X address start /end position	
	User	C 45	Command: RAM Y address start /end position	
	User	C 4E	Command: RAM X address counter	
	User	C 4F	Command: RAM Y address counter	
	User	C 24	Command: write BW RAM	
			Ram Content for Display	
5		-	Data operations for RED	
	User	C 11	Command: Data Entry mode setting	
	User	C 44	Command: RAM X address start /end position	
	User	C 45	Command: RAM Y address start /end position	
	User	C 4E	Command: RAM X address counter	
	User	C 4F	Command: RAM Y address counter	
	User	C 26	Command: write RED RAM	
			Ram Content for Display	
6	User	C 22	Command: Display Update Control 2	
	User	C 20	Command: Master Activation	
	IC	-	Booster and regulators turn on	1
	IC	-	Load LUT register with corresponding waveform setting stored in OTP)	BUSY = H
	IC	-	Send output waveform according RAM content and LUT.	
	IC	-	Booster and Regulators turn off	1
	IC	-	Back to idle mode	1
	User	-	Wait until BUSY = L	
7	User	-	IC power off;	

9.2 VCOM OTP Program

Sequence	Action by	Command	Action Description	Remark		
1	User	-	Power on (VCI and VPP supply)			
2	User	_	HW Reset			
	User	C 12	Command: SW Reset	BUSY = H		
	User	-	Wait until BUSY = L			
3	User	C 74 D 54	Command: Set Analog Block Control			
	User	C 7E D 3B	Command: Set Digital Block Control			
	User	C 22 D 80 C 20	Command: Master Activation (assigned by R22h) (Enable clock signal)	BUSY = H		
	User	-	Wait until BUSY = L			
4	User	C 37	Proceed OTP sequence. Command: OTP selection Control (default or spare)	OTP selection register		
5	User	C 36	Command: Program OTP selection	BUSY = H		
	User	-	Wait until BUSY = L			
	User	-	Power OFF (VPP supply)			
	User	- C 01	Send initial code to driver including setting of (or leave as POR) Command: Driver Output Control			
			(MUX, Source gate scanning direction)			
		C 03	Command: Gate Driving voltage Control			
	User	C 04	Command: Source Driving voltage Control	VCOM sensing		
	User	C 3A	Command: Set dummy line period	should have		
	User	C 3B	Command: Set Gate line width	same setting		
	User	Iser C 32 Command: Write LUT register VCOM sense required full set of LUT for operation, USER required writing LUT in register 32h				
		-	LUT parameter			
	User	C 22 D 40 C 20	Command: Master Activation (assigned by R22h) [Enable Analog blocks]	BUSY = H		
	User	-	Wait until BUSY = L			
7	User	C 29 D 49	Command: VCOM Sense Duration for 10 seconds			
8	User	C 28	Command: VCOM sense			
	IC	-	VCOM pin in sensing mode			
	IC	-	All Source cell have VSS output			
			All Gate scanning continuously			
	IC	-	According to R29h	BUSY = H		
	IC	-	Detect VCOM voltage and store in register			
	IC	-	All Gate Stop Scanning.			
	User	-	Wait until BUSY = L			
9	User	C 22 D 02 C 20	Command: Master Activation (assigned by R22h) [Disable Analog blocks]	BUSY = H		
	User	-	Wait until BUSY = L			
	User	-	Power On (VPP supply)			
10	User	C 2A	Command: Program VCOM OTP	BUSY = H		
	User	-	Wait until BUSY = L			
11	User	C 22 D 01	Command: Display Update Control 2 and Master Activation	BUSY = H		
		C 20	(Disable clock signal)			
	User		Wait until BUSY = L			
12	User	-	IC power off (VCI and VPP Supply)			

9.3 WS OTP Program

Sequence	Action by	Command	Action Description	Remark
1	User	-	Power on (VCI supply)	
2	User	-	Power on (VPP supply)	
3	User	-	HW Reset	
	User	C 12	Command: SW Reset	BUSY = H
	User	-	Wait until BUSY = L	
4	User	C 74 D 54	Command: Set Analog Block Control	
L	User	C 7E D 3B	Command: Set Digital Block Control	
	User	C 22 D 80 C 20	Command: Master Activation (assigned by R22h) (Enable clock signal)	BUSY = H
	User	-	Wait BUSY = L	
5	User	C 11 D 03	Command: Data Entry mode setting Set Address automatic increment setting = X increment and Y increment Set Address counter update in X direction	
6	User	C 44 D 00 D 31	Command: RAM X address start /end position Set RAM X address start /end from S0 to S399	
7	User	C 45 D 00 D 00 D 2B D 01	Command: RAM Y address start /end position Set RAM Y address start /end from G0 to G299	
8	User	C 4E D 00	Command: RAM X address counter Set RAM X address counter as 0	
9	User	C 4F D 00 D 00	Command: RAM Y address counter Set RAM Y address counter as 0	
12	User	C 24	Write corresponding data into RAM	
			Following specific format	
			Write into RAM	
			Full LUT	
13	User	C 4E D 00 C 4F D 00 D 00	Command: RAM address start /end position (Initial Ram address counter)	
14	User	C 30	Command: Program WS OTP Waveform Setting OTP programming	BUSY = H
	User	-	Wait BUSY = L	
15	User	C 22 D 01 C 20	Command: Master Activation (assigned by R22h) [Disable clock signal]	BUSY = H
	User	-	Wait BUSY = L	
16	User	-	Power off VPP and VCI	

10 Absolute Maximum Rating

Symbol	Parameter	Rating	Unit
Vcı	Logic supply voltage	-0.5 to +4.0	V
Vin	Logic Input voltage	-0.5 to V _{DDIO} +0.5	V
Vout	Logic Output voltage	-0.5 to V _{DDIO} +0.5	V
TOPR	Operation temperature range	-40 to +85	C°
Tstg	Storage temperature range	-65 to +150	C°

Table 10-1 : Maximum Ratings

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{CI} be constrained to the range $V_{SS} < V_{CI}$. Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g., either V_{SS} or V_{DDIO}). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

11 Electrical Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, VDD=1.8V, T_{OPR}=25°C.

Symbol	Parameter	Applicable pin	Test Condition	Min.	Тур.	Max.	Unit
Vcı	VCI operation voltage	VCI		2.2	3.0	3.7	V
Vdd	VDD operation voltage	VDD		1.7	1.8	1.9	V
Vcom_dc	VCOM_DC output voltage	VCOM		-3.0		-0.2	V
dV _{сом_} ос	VCOM_DC output voltage deviation	VCOM		-200		200	mV
Vсом_ас	VCOM_AC output voltage	VCOM		V _{SL} + V _{COM_DC}	Vcom_dc	V _{SH1} + V _{COM_DC}	V
Vgate	Gate output voltage	G0~G299		-20		+20	V
VGATE(p-p)	Gate output peak to peak voltage	G0~G299				40	V
VsH1	Positive Source output voltage	VSH1		+2.4	+15	+17	V
dV _{SH1}	VSH1 output voltage	VSH1	From 2.4V to 8.8V	-100		100	mV
	deviation		From 9.0V to 17V	-200		200	mV
V _{SH2}	Positive Source output voltage	VSH2		+2.4	+5	+17	V
dV _{SH2}	VSH2 output voltage	VSH2	From 2.4V to 8.8V	-100		100	mV
	deviation		From 9.0V to 17V	-200		200	mV
Vsl	Negative Source output voltage	VSL		-17	-15	-9	V
dVs∟	VSL output voltage deviation	VSL		-200		200	mV
Vін	High level input voltage	SDA, SCL, CS#, D/C#, RES#,		0.8V _{DDIO}			V
VIL	Low level input voltage	BS[2:1], M/S#, EXTVDD, CL				0.2VDDIO	V
Vон	High level output voltage	SDA, BUSY, CL	IOH = -100uA	0.9VDDIO			V
Vol	Low level output voltage	1	IOL = 100uA			0.1VDDIO	V
Vpp	OTP Program voltage	VPP		7.25	7.5	7.75	V

Table 11-1: DC Characteristics

SSD1619A

Symbol	Parameter	Applicable pin	Test Condition	Min.	Тур.	Max.	Unit
Islp_VCI	Sleep mode current	VCI	DC/DC OFF		20	35	uA
			No clock				
			No output load				
			MCU interface				
			access				
			Ram data retain				
Idslp_VCI1	Current of deep sleep	VCI	DC/DC OFF		1	5	uA
	mode 1		No clock				
			No output load				
			No MCU interface				
			access				
			Retain Ram data but				
			cannot access the				
			RAM.				
Idslp_VCI2	Current of deep sleep	VCI	DC/DC OFF		0.7	3	uA
	mode 2		No clock				
			No output load				
			No MCU interface				
			access				
			Cannot retain RAM				
			data.				
lopr_VCI	Operating Mode current	VCI	VCI=3.0V		1000		uA
V _{GH}	Operating Mode	VGH	Enable Clock and	19.5	20	20.5	V
	Output Voltage		Analog by Master				
V _{SH1}		VSH1	Activation Command	14.8	15	15.2	V
			VGH=20V				_
V _{SH2}		VSH2	VGL=-VGH	4.9	5	5.1	V
V SH2		V3H2	VSH1=15V	4.9	5	D. I	v
	-		VSH2=5V				
Vsl		VSL	VSL=-15V	-15.2	-15	-14.8	V
			VCOM = -2V				
V _{COM}		VCOM	No waveform	-2.2	-2	-1.8	V
			transitions.				
			No loading.				
			No RAM read/write				
			No OTP read /write				

Table 11-2: Regulators Characteristics

Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit
IVGH	VGH current	VGH = 20V	VGH			200	uA
IVGL	VGL current	VGL = -VGH	VGL			300	uA
IVSH1	VSH1 current	VSH1 = +15V	VSH1			800	uA
IVSH2	VSH2 current	VSH2 = +5V	VSH2			800	uA
IVSL	VSL current	VSL = -15V	VSL			800	uA
IVCOM	VCOM current	VCOM = -2V	VCOM			100	uA

12 AC Characteristics

12.1 Oscillator frequency

The following specifications apply for: VSS=0V, VDD=1.8V, T_{OPR}=25°C.

Table 12-1: Oscillator Frequency

Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit
Fosc	Internal Oscillator frequency	VCI=2.2 to 3.7V	CL	0.95	1	1.05	MHz

12.2 Serial Peripheral Interface

The following specifications apply for: VDDIO - VSS = 2.2V to 3.7V, TOPR = 25°C, CL=20pF

Table 12-2 : Serial Peripheral Interface Timing Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
fscl	SCL frequency (Write Mode)			20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	20			ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	20			ns
tcsнigн	Time CS# has to remain high between two transfers	100			ns
tsclhigh	Part of the clock period where SCL has to remain high	25			ns
t _{SCLLOW}	Part of the clock period where SCL has to remain low	25			ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tsihld	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns
Read m	ode			-	
Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Read Mode)			2.5	MHz
t _{cssu}	Time CS# has to be low before the first rising edge of SCLK	100			ns

ISCL				2.5	
t _{cssu}	Time CS# has to be low before the first rising edge of SCLK	100			ns
t cshld	Time CS# has to remain low after the last falling edge of SCLK				ns
t csнigh	Time CS# has to remain high between two transfers	250			ns
t sclhigh	Part of the clock period where SCL has to remain high	180			ns
tscllow	Part of the clock period where SCL has to remain low	180			ns
t sosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
t _{SOHLD}	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

Figure 12-1: SPI timing diagram

13 Application Circuit

Figure 13-1: Schematic of SSD1619A application circuit

Table 13-1: Component list for SSD1619A application circuit

Part Name	Value / Type	Reference Part
C0-C1	1uF [Max 10V]	TDK: C1005X5R1A105K
C2-C7	1uF [Max 25V]	TDK: C1608X5R1E105K
C8	0.47uF [Max 25V]	TDK: C1608X5R1E474K
D1-D3 Diode		OnSemi: MBR0530
L1 47uH		Sumida: CDRH2D18/LDNP-470NC
Q1	NMOS	Vishay: Si1304BDL
R1	2.2 Ohm	Vishay: CRCW08052R20FKEA
U1	0.5mm ZIF socket	Hirose: FH34S-24S-0.5SH(50)

14 PACKAGE INFORMATION

Figure 14-1 : SSD1619AZ die tray information

<u>SECTION A-A</u>

Symbol	Spec(mm) (mil)
W1	101.60±0.10(4000)
W2	91.55±0.10(3604)
W3	91.85±0.10(3616)
Н	4.55±0.10 (179)
Dx	13.55±0.10 (533)
TPx	74.50±0.10(2933)
Dy	7.40±0.10 (291)
TPy	86.80±0.10(3417)
Рx	14.90±0.05 (587)
Рy	2.80±0.05 (110)
Х	13.26±0.05 (522)
Y	1.15±0.05 (45)
Z	0.40±0.05 (16)
Ν	192(pocket number)

Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

The product(s) listed in this datasheet comply with Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People's Republic of China Electronic Industry Standard SJ/T 11363-2006 "Requirements for concentration limits for certain hazardous substances in electronic information products (电子信息产品中有毒有害物质的限量要求)". Hazardous Substances test report is available upon request.

http://www.solomon-systech.com